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ABSTRACT 

This paper introduces a class of linear phase lapped 
biorthogonal transforms with basis functions of variable 
length (VLGLBT). The transform can be characterized by 
a lattice which structurally enforces both linear phase and 
perfect reconstruction properties as well as provides a fast 
and efficient transform implementation. Our main moti- 
vation of the new transform is its application in image 
coding. The VLGLBT has several long overlapped basis 
functions for representing smooth signals to avoid block- 
ing artifacts. The rest of the bases covering high-frequency 
bands are constrained to be short to limit ringing arti- 
facts. The relaxation of the orthogonal constraint allows 
the VLGLBT to have significantly different analysis and 
synthesis banks which can be tailored appropriately to ob- 
tain high-quality reconstructed images. Most importantly, 
the variable-length property allows us to design very fast 
and low-complexity transforms. Comparing to the popular 
DCT, a fast VLGLBT named FLT only requires 6 more 
multiplications and 8 more additions. Yet, image coding 
examples show that the FLT is far superior than the DCT 
and is close to the 9/7-tap biorthogonal wavelet in both 
objective and subjective coding performance. 

1. INTRODUCTION 

Multi-channel block transforms have long found application 
in image coding. For instance, the JPEG image compres- 
sion standard [l] employs the 8 x 8 discrete cosine trans- 
form (DCT) at its transformation stage. At high bit rates, 
JPEG offers almost visually lossless reconstruction image 
quality. However, when more compression is needed, an- 
noying blocking artifacts appear since the DCT bases are 
short and do not overlap, thus have discontinuities at block 
ends. The development of the lapped orthogonal transform 
[2], its generalized version GenLOT [3], and the extensions 
to biorthogonality [4],[5], [6] help solve the blocking problem 
by borrowing pixels from the adjacent blocks to produce the 
transform coefficients of the current block. Lapped trans- 
forms outperform the DCT on two counts: (i) from the 
analysis viewpoint, it takes into account inter-block corre- 
lation, hence, provides better energy compaction; (ii) from 
the synthesis viewpoint, its basis functions decay asymptot- 

drastically. 
ically to zero at the ends, reducing blocking discontinuities 

Nevertheless, lapped transforms have not yet been able 

to  replace the DCT in international standards. One rea- 
son is the increase in computational complexity. In this 
paper, we introduce the first generalized lapped biorthogo- 
nal transform with basis functions of variable length called 
the VLGLBT. Since blocking is most noticeable in smooth 
image regions, in order to reduce blocking artifacts, filters 
covering high-frequency bands do not have to be long and 
overlapped. Long basis functions are only needed for low- 
frequency components. Moreover, the short basis functions 
reserving for high-frequency signal components can effec- 
tively limit the ringing artifacts. The transform's variable- 
length property allows us to design fast lapped transforms. 
Comparing to the DCT, the novel FLT only requires 6 
more multiplications, 8 more additions, and 2 more delays 
(borrowing 4 low-frequency coefficients from 2 neighboring 
blocks). Despite its simplicity, the FLT provides a sig- 
nificant improvement in image quality over the traditional 
DCT - little blocking and ringing artifacts a t  medium and 
high compression ratios. 

2. 

2.1. Review 
In this paper's context, lapped transforms are M-channel 
uniform linear phase perfect reconstruction filter banks 
(LPPRFB) whose polyphase representation is depicted in 
Figure 1 below. 

LATTICE STRUCTURE FOR THE VLGLBT 
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Figure 1. Polyphase representation of an  LPPRFB. 

The most general lattice for M-channel lapped biorthog- 
onal transforms (GLBT) is presented in [6]. The polyphase 
matrix E(z) can be factorized as 

E(z) = GK-I(z )GK-~(z )  . . .  Gi(z) Eo, (1) 
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Figure 2. The  most general lattice structure for linear phase lapped transforms with filter length L = K M .  

Uo Uo J y  
Eo = & [ V o J y  -Vo 1 '  (3) 

This lattice results in all filters having length L = K M .  
Each cascading structure Gi ( z )  increases the filter length by 
M .  All U; and Vi, i = 0 , 1 , .  . . , K -  1, are arbitrary 
invertible matrices, and they can be completely parameter- 
ized by their SVD decomposition, i.e., U; = Uior;Uil and 
Vi = VioAiVzl, where Uio, Uil, V;O, Vi1 are orthogonal 
matrices, and I'i, A, are diagonal matrices with positive 
elements. The parameterization is shown in Figure 3. For 
fast implementations, the initial stage Eo can be replaced 
by the DCT. Further trade-off between the FB's speed and 
performance can be elegantly carried out by setting some of 
the diagonal multipliers to 1 or some of the rotation angles 
to 0. 

x 

Figure 3. Parameterization of a n  invertible matrix. 

2.2. Existence Conditions 
Let us first consider an M-channel LPPRFB with variable- 
length filters: M is even, N filters of length M K ,  ( M  - N )  
filters of length M ( K  - l), each analysis filter h,[n] and the 
corresponding synthesis filter fi [n] have the same length 
L,,O 5 i 5 M - 1. The following theorems describe the 
class of all possible solutions in terms of the FB's symmetry 
polarity and filter length. 
Theorem I. For the class of LPPRFBs described above, 
the number of long filters N and the number of short filters 
( M  - N )  must both be even. 

Proof. This result can be trivially established from the 
permissible solutions of the M-channel LPPRFB whose fil- 
ters have lengths L, = K,M + /3 [7]. The sum of all the  
filter lengths has to be even when M is even. Hence, N 
cannot be odd. 0 
Theorem 11. Furthermore, half of the long filters are sym- 
metric, and half of the short filters are symmetric. 

The proof is omitted here due to the lack of space. I t  
is constructed analogously to that of orthogonal systems 
presented in [8]. The complete proof can be found in [9] 
and will appear in the full version of this paper [ lo] .  

2.3. Variable-length Lattice 
Let EL(z) be the N x M polyphase matrix of order ( K -  l), 
representing the long analysis filters, and Es(z) be the 
( M  - N )  x M polyphase matrix of order ( K  - 2) ,  rep- 
resenting the shorter analysis filters. Similarly, let RL ( z )  
and Rs(z) represent the long and the short synthesis filters 
respectively. Without any loss of generality, the long fil- 
ters are permuted to be on top. The following factorization 
establishes the completeness of our solution. 

Since all filters have linear phase, E(z)  also has to satisfy 
the LP property [7]: 

(4) 
EL(z) = z - ( ~ - ' )  DL EL(z-') Jh.i 

z - ( ~ - ' )  Ds Es(z-') JM. { - - 

where N x N DL and ( M  - N )  x ( M  - N )  Ds are diagonal 
matrices whose entries are +1 when the corresponding filter 
is symmetric and -1 when the corresponding filter is anti- 
symmetric. EL ( z )  now forms a remarkably similar system 
to an N-channel order-(K - 1) GLBT [ 6 ] .  

From [6],[11], there always exists a factorization similar 
to the one shown in Eq.(1) that reduces the order of the 
polyphase matrix EL(z) by one. Hence, the VLGLBT's 
polyphase matrix E(z) can always be factorized as follows 
(the $ long symmetric filters are arranged on top) 

IN 
w =  [ :$ -1; : ] , A(.) = [ 'd 

0 1  0 

(5) 

and (6) 

0 1  

The above factorization leaves Es ( z )  untouched, it re- 
duces the length of the longer filters by M ,  so all filters 
now have the same length of M ( K  - 1). EIC-Z(~)  is the 
familiar polyphase matrix of an order-(K - 2) GLBT, and 
it can be factorized into the familiar cascade structure in 
Eq.(l). The complete factorization is 

E ( t )  = G o ( t )  G K - z ( z )  . . .  G l ( z )  Eo, (7) 
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Figure 4. Detailed lattice structure for a VLGLBT (drawn for M = 8 and N = 4) .  
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depicted in Figure 4. The inverse transform is obtained by 
inverting each building block and causality can be achieved 
by a z-' shift, i.e., 

; &".; 6 ,  3::- .-* a --... - 
GK-l - C... - .-. C... - 

-1.. - 
C... - - 

2.4. The Fast VLGLBT 
Despite significant performance improvements, lapped 
transforms have not yet been able to replace the DCT 
in practical systems. One obvious reason is the increase 
in computational complexity. The rest of this section 
is devoted to the design of a high-performance, yet low- 
complexity, lapped transform named FLT to replace the 
DCT in the near future where the newly-found flexibility of 
the VLGLBT is exploited to our advantage. 

To minimize the transform's complexity, we choose the 
fewest possible number of long filters and set the initial 
stage Eo to- be the DCT itself. Only two variable-length 
structures Go(z)  and Gl(z)  are employed (NO = NI  = 2). 
In the orthogonal case, ,we can only obtain the trivial solu- 
tion since the matrices U, and V, degenerate to singleton 1 

0 
I 
2 

4 IDCTE, 
Figure 6. The FLT lattice drawn for M = 8. 
ward transform. (b) Inverse transform. 

or -1, and there are no free parameters for transform opti- 
mization. In the more general biorthogonal case,* nontrivial 
solutions exist. The invertible matrices U, and V, now be- 
comes the lattice coefficients a , ~  and ail as shown in the 
final FLT lattice in Figure 6. 

(a) For- 

3. DESIGN EXAMPLE AND APPLICATION 
IN IM[AGE CODING 

An FLT design example is obtained using uncon- 
strained nonlinear optimization where the lattice coeffi- 
cients {a00,a01,~10,all,c~201a21) are the free parameters. 
The cost function is a weighted combination of coding gain, 
DC leakage, stopband attenuation, and mirror frequency at- 
tenuation, all of which are desirable properties in yielding 
high-quality reconstructed images [14]. 

As usual, the system's generalized coding gain is given 
the highest priority. The relaxation of the orthogonal con- 
straint allows us to tailor the FLT's analysis and synthesis 
filters appropriately. In particular, in the analysis bank, we 
opt for high stopband attenuation near DC (w = 0) since 
that is where most of the energy is concentrated in meaning- 
ful images. In the synthesis bank, the stopband attenuation 
cost function is reversed. We force the two long synthesis 
filters covering low-frequency bands to have high stopband 
attenuation near and/or at  w = 7r to enhance their smooth- 
ness. 

The frequency and impulse responses of the FLT's analy- 
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Figure 7. An FLT design example. 
(b) Synthesis bank. 

sis and the synthesis filters are depicted in Figure 7(a) and 
Figure 7(b) respectively. Transform properties can be found 
in Table 1. Note that  the last six filters of the FLT come 
straight from the DCT’s. 

The VLGLBT’s objective coding results (PSNR in dB) 
as well as other popular transform’s for standard 512 x 512 
Lena, Goldhill, and Barbara test images are tabulated in 
Table 2.  In the block-transform cases, we used the modified 
zerotree structure in [13]. The transforms in comparison 
are: 

(a) Analysis bank. 

DCT: 8-channel, all 8-tap filters 
FLT: VLGLBT with 8-channel, two 24-tap and six 8- 

LOT: 8-channel, all 16-tap filters 
0 GLBT: 8-channel, all 16-tap filters 
0 9/7-tap wavelet, six level of decompositions. 

t ap  filters 

As expected, the FLT offers a 0.3 - 0.5 dB improvement 
over the DCT at medium and low bit rates. It is inferior 
to much more complex transforms like the 9/7-tap wavelet 
and the 8 x 16 GLBT. However, we stress that  it is de- 
signed mainly to improve the reconstructed image quality. 
Figure 8 confirms its high potential in this important cri- 
terion. Enlarged portions of reconstructed images obtained 
from various transforms show that our novel FLT provides 
a significant improvement in image quality over the tradi- 
tional DCT: blocking is avoided while ringing is suppressed. 
In fact, the FLT is much better than the quasi-optimal 
type-I1 LOT [2] in blocking elimination. The FLT’s visual 
performance comes quite close to those of state-of-the-art 
wavelets and GLBTs. For more details on the coding algo- 
rithm and comparison, the reader is referred to  the web site 
http://saigon. ece:wisc. edu/-waveweb/Coder/index.html. 

4. CONCLUSIONS 
We have presented in this paper the theory, design, and 
implementation of the variable-length lapped biorthogonal 
transform. The FLT is based on a fast, efficient, robust, 
and modular lattice structure. With only 6 more multiplica- 
tions, 8 more additions, and 2 more delays comparing to the 
DCT, our transform offers a fast, low-cost, VLSI-friendly 
implementation while providing high-quality reconstructed 
images at medium and low bit rates as demonstrated in the 
image coding example. Its block-based nature also supports 
parallel processing mode, and facilitates region-of-interest 
coding/decoding as well as processing large images under 
limited memory constraint. 
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I II Transforms I 

DCT VLGLBT LOT GLBT 
8 x 8  2x246~8 8 x  16 

. ! Transform 
Characteristics 

Coding Gain (dB) 

DC Attenuation (- dB) 

Stopband Attenuation (- dB) 

9.62 

19.38 13.50 

8.83 9.23 9.22 

310.62 314.38 312.56 

9.96 8.05 

1 Mirror Freq. Attenuation (- dB) 11 322.10 I 309.76 I 317.24 I !is54 I 
Table 1. Transfnrm characteristics comparison 

36.31 

31.11 

27.28 

24.58 

1- ~ Lena II Goldhll II Barbara I 

36.22 

31.12 

27.42 

24.86 

Comp. 
Ratio 

Figure 8. Coding results of Lena at 1:32 compression ratio. Enlarged portions. (a) Original image (b) DCT 
2 x 21 6 x 8 VLGLBT (d) X x l f i  LOT (e) 8 x l f i  GLBT (f)  SPIHT, !)/7-tap biorthogonal wavelet. 

(c) 

70 1 


