Visual Communications and Image Processing '94

Aggelos K. Katsaggelos
Chair/Editor

25–29 September
Chicago, Illinois

Volume 2308
Part Three of Three Parts
PLENARY PAPER

1576 Image sequence coding using 3D scene models [2308-198]
B. Girod, Univ. Erlangen-Nürnberg (FRG)

SESSION 18 VIDEO CODING III

1594 Comparison of motion vector coding techniques [2308-154]
P. Guillotel, C. Chevance, Thomson-CSF (France)

1605 Segment-based video coding using an affine motion model [2308-155]
H. Jozawa, NTT Human Interface Labs. (Japan)

1615 Coding of edge blocks in digital video sequence coding [2308-156]
J. D. Kim, Korea Telecom Systems Development Ctr.

1627 Video segmentation using spatial proximity, color, and motion information for region-based coding [2308-157]
W. H. Hong, N.-C. Kim, Kyungpook National Univ. (Korea); S. Lee, Electronics and Telecommunications Research Institute (Korea)

1636 Application of dynamic Huffman coding to image sequence compression [2308-158]
B. Jeon, J. Park, J. Jeong, Samsung Electronics Co. (Korea)

1648 Reversible compression of a video sequence [2308-159]
N. D. Memon, Northern Illinois Univ.; K. Sayood, Univ. of Nebraska/Lincoln

SESSION 19 WAVELET/FRACtAL/MULTiresOLUTION IMAGE CODING

1662 Wavelet transforms in a JPEG-like image coder [2308-161]
R. L. de Queiroz, C. K. Choi, Y. Huh, J. J. Hwang, K. R. Rao, Univ. of Texas/Arlington

1674 Fractal-based image compression: a fast algorithm using wavelet transform [2308-162]
Y. Tang, W. G. Wee, Univ. of Cincinnati

1683 Fractal transform coding of color images [2308-163]
B. Hürten, P. Mols, S. F. Simon, Rheinisch-Westfälische Technische Hochschule Aachen (FRG)

1692 New compression method for multiresolution coding algorithms [2308-164]
C.-Y. Wang, National Tsing Hua Univ. (Taiwan China); T.-S. Liu, National Tsing Hua Univ. and Telecommunication Labs. (Taiwan China); L.-W. Chang, National Tsing Hua Univ. (Taiwan China)

1702 Layer coder for hierarchical rate-distortion optimal coding of images [2308-165]
S. F. Simon, B. Hürten, Rheinisch-Westfälische Technische Hochschule Aachen (FRG)

1711 Stochastic determination of optimal wavelet compression strategies [2308-166]
D. E. Waagen, TRW, Inc.; J. D. Argast, Aldus Corp.; J. R. McDonnell, Naval Command, Control and Ocean Surveillance Ctr.

1723 Low-complexity high-quality low bit-rate image compression scheme based on wavelets [2308-167]
C.-C. Chuang, G.-K. Ma, Industrial Technology Research Institute (Taiwan China)
Wavelet Transforms in a JPEG-like Image Coder

R. de Queiroz1, C. Choi, Y. Huh, J. Hwang, K. R. Rao
Electrical Engineering Department
University of Texas at Arlington
Box 19016, Arlington, TX, 76019

Abstract

The discrete wavelet transform is incorporated into the JPEG baseline coder for image coding. The discrete cosine transform is replaced by an association of two-channel filter banks connected hierarchically. The scanning and quantization schemes are devised and the entropy coder used is exactly the same as used in JPEG. The result is a still image coder that outperforms JPEG while retaining its simplicity and most of its existing building blocks. Objective results and reconstructed images are presented.

Keywords: image coding, wavelet transform, JPEG.

1 Introduction

The discrete cosine transform (DCT) \cite{1} plays a major role in the popular image data compressors and DCT-based algorithms are widely available nowadays. In still image compression, the JPEG baseline coder (JPEG) \cite{2} is a "de facto" standard and there are several chips and programs available to perform JPEG compression and decompression. JPEG is based on the DCT, because of the DCT's fast implementation algorithm allied with good performance. Recently, much attention has been devoted to the dyadic discrete wavelet transforms (DWT) \cite{3}, which has a versatile time-frequency localization due to a pyramid-like multiresolution decomposition. Several authors have studied the DWT in image coding, obtaining performances superior to JPEG or most of other DCT-based coders \cite{4,5,6,7}. However, many times, most of the advantages come at the cost of an increase in complexity, and by the use of more sophisticated encoding algorithms. In this work we explore a JPEG-like coder which uses the main building blocks of JPEG (sometimes with minor changes) and the DWT to achieve a versatile system that outperforms JPEG, with small complexity penalty

2 Transforming the image

As in any transform coder, the image is transformed and the resulting transform coefficients are, then, quantized and encoded. The DWT is known to be generated by a cascade of filter banks and the DWT is essentially the well-known subband decomposition \cite{3,8,9,10,11,12}. However, in its most popular form, the dyadic DWT, the input spectrum is partitioned into octave-width subbands. The advantage of the DWT comes from the trade-off between spatial and frequency resolutions, as the DWT has shorter basis functions (filters) for higher frequencies, and longer basis functions (filters) for lower frequencies. Also, there are more samples to represent the higher frequency subbands, than the lower frequency ones. Therefore, the combination of more samples and shorter basis functions will attain a better spatial localization for higher frequencies. On the other hand, the low-frequency basis functions (filters) are longer and the low-frequency subbands have less samples, attaining a better subband selectivity with less spatial resolution. As low frequency components lack details, spatial resolution is not so important in this case.

Fig. 1(a) shows the analysis section of a two-dimensional (2D) separable filter bank, where first the image rows are passed through the 2-channel filter bank, and, then, the columns are processed. Fig. 1(b) shows the synthesis section to reconstruct the signal from the subband signals. The analysis section can be viewed as a 2×2 transform applied to the image (note that each subband has one fourth of the samples in the original signal). Also, the synthesis section can be viewed as a 2×2 inverse transform. Fig. 1(c) shows the connection of the transforms to construct the forward DWT. Note that only the low-pass subband is connected to another transform. The DWT is composed by a

1This work was supported in part by CNPq, Brazil, under Grant 260.804-98-1.
Figure 8: Zoom of image “Lena” coded at 0.5 bpp. Top left: original; top right: C0 (JPEG); bottom left: C2; bottom right C3.