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On Unitary Transform Approximations
Ricardo L. de Queiroz,Member, IEEE

Abstract—In this letter, we present a method to find a unitary
transform which is the closest to a given square transform matrix
in the sense of minimizing the variance of the output error
(discrepancy) for given signal statistics. An extension of the result
to frequency responses of filterbank transfer matrices is also
given along with an example to demonstrate the feasibility of
the method.

Index Terms—Filterbanks, transform.

I. MOTIVATION

UNITARY matrices have several properties, such as norm
preservation, that make them attractive for numerous ap-

plications, e.g., image compression, adaptive filtering, etc. [1].
In some circumstances, it is desirable to find a unitary matrix
that best approximates a given square matrix. Those transforms
are useful in image compression and to construct time-varying
filterbanks [2], [3]. In [4], it is shown how to minimize the
norm of the difference between said matrices. In this letter,
we are interested in transforms which are used to transform
blocks of samples from a wide-sense stationary signal with
known statistics. Thus, we are interested in minimizing the
output error incurred by replacing one matrix by another. In
this letter, we present a solution for the problem and also
include an extension to approximate a paraunitary filterbank
[5] (a transform whose polyphase transfer matrix is unitary for

A simple design example is also presented.

II. UNITARY APPROXIMATION

Let the zero-mean input signal be transformed by the
matrix on a block-by-block basis as where

represents a block of input samples. Assume the signal
to have autocorrelation matrix Let be a unitary

matrix of the same size and define an error vector as

(1)

Theorem 1: The unitary matrix which is the closest to the
nonsingular matrix in the sense of minimizing the distance

(error energy) is given by where
and are the unitary matrices derived from the singular

value decomposition (SVD) of as
Proof: By

exchanging the inner product by the trace of the outer product
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we have

(2)

In (2), note that 1)
which is independent of 2)

is independent of 3) since then
and 4) for a square matrix

In light of these facts,
we can see that the minimization of is equivalent to the
maximization of

(3)

where Let the SVD of be given by
where the matrices are unitary and is a diagonal

matrix containing the nonnegative singular values ofThen

where is some unitary matrix. Let the entries
of be and the singular values of (diagonal entries in

be denoted by Hence

(4)

Furthermore, if is nonsingular, so is and all are positive
and real. Therefore, since is unitary and (4)
is maximized iff and for i.e.,
As a result, and Thus

(5)

Note that, in general, this result is quite different from the
matrix approximation problem [4], which becomes a special
case. For an uncorrelated (white) signal, then and
the the above result matches the one in [4]. Under another
view, we can say that, for uncorrelated input, the error variance
cost can be mapped to a matrix norm formulation.

Corollary 1: If is a singular matrix, a unitary matrix
which minimizes given in (5), is a nonunique solution.
If all are sorted by magnitude, the general solution is given

by where rank and is any

unitary matrix.
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Proof: If is singular, is singular and
Then, (4) becomes such that conditions

and (for
are necessary. However, for entries are irrelevant
to (4). Thus, entries for and have to form a

unitary matrix, from which
derives. As a result, is a nonunique closest
approximation.

Corollary 2: For the case of a linear block transform
with real entries and is a real signal, is a
real orthogonal matrix that approximates in the sense of
minimizing

Proof: In this case is real and so are and thus
is orthogonal.

A. Extension to Paraunitary Filterbank Approximation

Let be the polyphase transfer matrix (PTM) of an-
channel biorthogonal filterbank. (See [5] for details of transfer
matrices and filter banks.) The PTM relates the input vector

containing the -transforms of the polyphase
components of to the output vector which contains
the -transforms of the subband signals, as

Assume is periodic with a very large period
and let all Fourier transforms be computed over one period.

It can be shown that

(6)

where is the Fourier transform of the cross correlation
between polyphasesand i.e.,

where is the autocorrelation function of
Corollary 3: Let have entries The parau-

nitary PTM which is the closest to in the sense
of minimizing the distance where

has its frequency response
governed by

(7)

where and are unitary matrices derived from
the SVD of

(8)

Proof: From (6), we have
Since does not affect the minimization, the

result in (7) follows from the proof of Theorem 1, where
matrix entries are now a function of and is replaced
by

III. EXAMPLE

In a simple example, suppose one wants to design a 88
unitary transform which has the lowpass bases with as much

Fig. 1. Bases of a nonunitary matrix comprising DCT and Haar bases (left)
and its closest unitary counterpart (right) for an AR(1) signal.

energy compaction as the discrete cosine transform (DCT)
[1], but with higher frequency bases with as much space
localization as the Haar transform. First, we construct an 88
nonunitary transform where four bases belong to the DCT and
four to the Haar transform. Such matrix has a condition number
close to two and the matrix entries are plotted in Fig. 1. Our
unitary approximation for an AR(1) signal with
is also shown in Fig. 1. Applications will be presented in a
forthcoming paper.
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