
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998 1661

Processing JPEG-Compressed
Images and Documents

Ricardo L. de Queiroz,Member, IEEE

Abstract—As the Joint Photographic Experts Group (JPEG)
has become an international standard for image compression,
we present techniques that allow the processing of an image in
the “JPEG-compressed” domain. The goal is to reduce memory
requirements while increasing speed by avoiding decompression
and space domain operations. In each case, an effort is made to
implement the minimum number of JPEG basic operations. Tech-
niques are presented for scaling, previewing, rotating, mirror-
ing, cropping, recompressing, and segmenting JPEG-compressed
data. While most of the results apply to any image, we focus on
scanned documents as our primary image source.

Index Terms—Compression, image processing, JPEG.

I. INTRODUCTION

SINCE images were brought to the desktop by more pow-
erful computer hardware, image compression has become

a popular necessity. The resolution of scanners, monitors,
and printers has steeply increased in the past few years,
outpacing the decline in memory prices. We are particularly
concerned with images manipulated in the printing business,
which involves the scanning and printing of documents and
pictures. A typical scan of an 8.5 11 inches page at 600
pixels/in (ppi) generates roughly 30 MB of data per color
separation (assuming one byte per color component per pixel).
The same amount of data may be necessary to print a full
page at a high addressability printer at the same resolution.
From this example, we can appreciate the potential savings
that might be provided by compression.

Typical lossless (or reversible) coders can barely attain a
compression ratio of 2 : 1 for most images. Thus, users often
cope with lossy algorithms, which tend to slowly degrade the
image quality in exchange for more aggressive compression
ratios. The recommendation ISO DIS 10 918-1 known as JPEG
Joint Photographic Experts Group (JPEG) has become an
international standard for lossy compression of still images.
Although there are more effective (and complex) compression
methods, the recent decline in memory prices makes the
JPEG trade-off (complexity versus compression) an ideal
candidate for storage format. A comprehensive discussion of
the standard, along with the recommendation text itself, can
be found in [1]. JPEG has several modes of operation. For
simplicity we concentrate on the most popular mode, known as

Manuscript received January 7, 1997; revised March 5, 1998. The associate
editor coordinating the review of this manuscript and approving it for
publication was Dr. Thrasyvoulos N. Pappas.

The author is with Xerox Corporation, Webster, NY 14580 USA (e-mail:
queiroz@wrc.xerox.com).

Publisher Item Identifier S 1057-7149(98)08715-6.

baseline JPEG, although several results may also apply to other
modes of operation. We employ the termJPEG to designate
baseline JPEG, unless otherwise stated.

The objective of this paper is to present techniques that
allow the processing of JPEG-compressed data without de-
compressing it, i.e., operations are performed in the “JPEG-
compressed” domain. The meaning of “JPEG-compressed”
domain also deserves some clarification. JPEG compression
is performed by a series of operations: transform, quanti-
zation, zigzag scanning, differential pulse code modulation
(DPCM), and entropy coding. Decompression is accomplished
by performing inverse steps in an inverse order. We assume
the data is only available in compressed format. Therefore,
the first operations to be applied to the data are part of
the decompression routine, and an effort is made to perform
as few operations as possible. In some cases, only partial
entropy decoding is needed, while in others we use most of the
data in transform domain. So, most operations whose outputs
are also JPEG-compressed images use the following steps:
partial block decompression, fast processing, partial block
compression. Each operation described in this paper can be
alternatively implemented in the trivial way: decompressing,
processing, and recompressing the image. The motivation for
processing compressed images is because it saves memory
and/or improves speed. Other authors have also addressed the
topic of processing/analyzing JPEG compressed data. See, for
example, [3]–[7] for further results in this topic.

Section II gives an overview of JPEG. Section III presents
a technique to very quickly extract a preview image from the
JPEG data and to scale the image size. Section IV introduces
the concept of “cost maps” and show how they can be used
for cropping an image and to ease the processing in the
compressed domain. Rotation, transposition, mirroring, etc. are
discussed in Section V. Image segmentation is discussed in
Section VI, where we use a technique based on the cost maps.
Section VII is concerned with recompression of the already
compressed data. We discuss some techniques and suggest
improvements and shortcuts. Finally, the concluding remarks
are presented in Section VIII.

II. JPEG OVERVIEW

As discussed, JPEG is implemented through a sequence of
operations as in Fig. 1. Let us ignore file format related aspects
(such as header, byte stuffing, etc. [1]). The image is divided
into blocks of 8 8 pixels. Blocks are grouped into minimum
coding units (MCU). If the image dimensions are not integer
multiples of the dimensions of an MCU, the image may be

1057–7149/98$10.00 1998 IEEE

1662 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

Fig. 1. JPEG basic operations.

Fig. 2. Grouping blocks in an MCU for typical luminance-chrominace data,
and for a monochrome image.

Fig. 3. Zigzag scanning order for an 8� 8 block.

padded (perhaps with zeroes) until fitting the desired size. The
real image size is conveyed in the header so that the decoder
can appropriately crop the resulting image. If the image has
a number of color separations, it is frequently converted to a
luminance/chrominance/chrominance color space [1] such as
YCrCb, YUV, CIELab, etc., and the chrominance signals are
commonly downsampled by a factor of two in each direction.
A typical MCU is illustrated in Fig. 2, containing four blocks
from the luminance separation and one block from each of
the chrominance separations. If the image is monochrome, the
MCU has a single block. For simplicity, assume that an MCU
contains just one block so that we can ignore MCU in this
discussion, since grouping blocks does not affect the results
in this paper.

The basic building blocks for JPEG compression are shown
in Fig. 1. The block is transformed using the discrete cosine
transform (DCT) [1], [2]. The DCT of an -point sequence
is defined by the matrix whose entries are

(1)

where and , for . Let the
block of 8 8 pixels be denoted by , while the transformed
block is denoted by . The separable transform and its inverse

are performed as

(2)

The DCT matrices are highly structured and have fast imple-
mentation algorithms [2].

The quantization step involves simple unbounded uniform
quantizers. Each of the 64 transformed coefficients in
a block is applied to a uniform quantizer with step size
generating a quantized number . Quantization and inverse
quantization in JPEG are defined as

round (3)

The step sizes are stored in a table that is transmitted along
with the compressed data.1 Example (default) tables for lumi-
nance and chrominance are given in the JPEG draft.

The two-dimensional (2-D) array is converted into a
one-dimensional (1-D) vector through zigzag scanning,
which organizes the data into a vector following the path
shown in Fig. 3. The DC component is the first element
of the vector and is replaced by the difference between itself
and the DC component of the previous block,2 and this
difference is represented in . The inverse operations are
performed at the decoder side (from to).

This resulting vector is lossless encoded using a combina-
tion of run-length coding (RLC) and variable-length coding
(VLC). Both the DC and the AC coefficients are divided into
category, offset, and sign. Let the number be represented in
magnitude and sign so that its magnitude is represented as a
binary string of fixed length. For example: 00...001XXXXX.
There are a number of zeros before the first nonzero bit
followed by a number of bits that can be either zero or one.
The order of the last nonzero digit (from right to left) is the
category of the number (SSSS), which in the example is 6.
There are, thus, SSSS-1 offset bits to completely characterize
the magnitude given the category. If the number is 0, we define

. is encoded by sending a variable length
code representing SSSS [1], followed by one bit for sign (1
if positive), and, SSSS-1 bits for the offset. If ,
offset is not sent, and if , the sign is not sent either.
The remaining 63 elements of are encoded through a
combination of therun of zero-valued elements before the first
nonzero element(RRRR) and of the element itself. Again,
the coefficient is broken apart into sign, category and offset.
RRRR and SSSS are combined into one 8-b symbol. If the
run is larger than 16, a special symbol is used (ZRL). The AC

1In case multiples images are transmitted, there is a provision to transmit
all the tables upfront [1].

2JPEG defines variants for multiple-blocks MCU and when using restart
markers [1].

DE QUEIROZ: JPEG-COMPRESSED IMAGES 1663

Fig. 4. Processing a compressed buffer. The goal is to perform as few JPEG operations as possible before and after the processing stage.

Fig. 5. Test image after compression at a ratio of 10.7 : 1.

coefficients are encoded by sending the variable length code
representing the RRRR/SSSS symbol followed by one sign bit
(1 if positive), and by SSSS-1 offset bits. If all coefficients are
zero until the end of the vector an EOB symbol is encoded
instead. Both EOB and ZRL symbols are encoded using the
same table as RRRR/SSSS. The decoder decodes symbols,
reads signs and offsets, and reconstructs the vector.

Definitions of VLC tables are beyond the scope of this pa-
per. However, JPEG specifies example (default) tables and also
provides algorithms for image specific table optimization. As
with the quantizer tables, VLC table information is provided
to the decoder. A preferred way to encode and decode the
(RRRR/SSSS or SSSS) symbols is by using a look-up table

(LUT). Each symbol has 8 b, and each codeword might use
anything between one and 16 bits. So, the encoder may use an
up-to-256-entry LUT containing the codeword and its length,
while the decoder might use a 64K-entry LUT containing the
decoded symbol and the codeword length. At the decoder, the
length information may be used to shift a 16-b register after
the symbol is decoded and to make it ready for the next input
data. In between symbols, of course, one may extract offset
and sign bits from the register and shift it appropriately.

The goal of this paper is not to compress an image but to
operate on an already compressed buffer. Fig. 4 illustrates the
process, where the compressed data is (partially) decompressed
and processed. The result is, then, recompressed into an

1664 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

Fig. 6. Subblock ofm � n DCT coefficients(m = 3; n = 6).

output buffer. In the figure, there are several options for
where to place ashortcut processing stage and bypass the
remaining JPEG operations. An attempt is made to implement
the minimum number of JPEG stages.

Throughout the paper we use a test document which was
compressed using JPEG’s default luminance quantizer table
scaled by 1.25 achieving a compression ratio of 10.7 : 1. The
decompressed test image is shown in Fig. 5. It contains regions
with halftones, text and continuous tone (contone) images. The
image was originally obtained by scanning a document at 400
ppi and pasting images electronically, before compression. The
image resolution is 2424 2824 pixels.

III. PREVIEWING AND RESIZING

Decimation and interpolation can be performed in the DCT
domain [2]. Given that the DCT is a filterbank [8], one
can borrow the filtering characteristics of the basis functions
(filters) and perform filtering by simply discarding subbands or
padding zeros. By weighting coefficients in the DCT domain,
one will not get an equivalent linear time-invarying filter. In
fact, the effective filter is a linear periodically time-varying
(LPTV) system [8]. A discussion on the resulting LPTV filter
and its efficacy for image downsampling can be found in [9].
By simply discarding or adding zero subbands one might get
adequate and fast results using the DCT [9]–[13].

Suppose one has a compressed buffer and wants to quickly
extract a downsampled image for previewing purposes. Start-
ing with the 8 8 blocks inherent of JPEG, the inverse
transform is given by (2). Let us denote the lower-frequency

coefficients of by , as in the example in Fig. 6,
i.e., contains for and . A
good preview approximation for an image at times
the original resolution can be obtained by extracting a block
of pixels for every JPEG block. This can be
accomplished as:

(4)

In other words, we perform a scaled inverse DCT over
. Two cases of interest are and .

The first is the trivial case of extracting the DC component
, enough said. The second one, occurs for example

Fig. 7. Preview images extracted from the compressed bitstream for
m = n = 1 (DC only) andm = n = 2.

when one scans a document at 300 ppi, compresses it, and
wants to preview the image in a typical 75 ppi monitor. In
this case,

(5)

(6)

where is the quantized DC coefficient (DPCM de-
coded). Note that the above method just requires four integer
multiplications, eight additions, plus scaling. The scaling by
a power of two of an integer can be done by binary shift.
Note that even can be calculated faster because only
the relevant samples are to be decoded. After the last relevant
sample has been assigned, one may skip the rest of the block by

DE QUEIROZ: JPEG-COMPRESSED IMAGES 1665

Fig. 8. Block diagram for resizing and previewing.

decoding the RRRR/SSSS symbols and shifting out the next
SSSS samples (without bothering with the reconstruction of
the coefficient amplitude and sign). Preview images extracted
from the compressed data are shown in Fig. 7.

Other values of and apply as well and there is a
fast DCT implementation for virtually any size. Noninteger
relations can be used and, for this, one might start with the
closest values of and resize the decompressed image. At
least it saves the computation of the full inverse DCT.

For upsampling the image, a block is formed as

(7)

and the inverse transform is performed as in (4), i.e. an inverse
DCT.

Now, suppose one wants to resize the image and recompress
it in a different size. Regrettably, there is no easy way to do
it for a general scaling factor. This is because once the image
is recompressed, the block size is dictated by JPEG as having
8 8 samples. By resizing the input blocks, we are forced to
gather pixels from a plurality of input blocks to form a single
8 8 output block. The first step is basically the previewing
process as shown in Fig. 8. The resulting samples are grouped
into 8 8 blocks further applying the basic JPEG compression
steps. In this case, savings only come from the previewing
process replacing the 8 8 inverse DCT. Simplifications are
obtained if or are both multiples of 8 or are either 1, 2,
or 4. In this case, the original block is scaled into an integer
number of new blocks, or several original blocks are scaled and
grouped to form a single new block. These constraints largely
simplify the process of forming new blocks (Fig. 8) but do not
affect the other operations (previewing and compression).

IV. THE ENCODING COST MAP

The cost in an encoding process is defined as the number
of bits required to encode a particular symbol or collection
of symbols. In the JPEG context, we focus on the cost of
encoding one block. An encoding cost map (ECM) can be
formed where each entry in the map is related to the cost of
each associated block in the document. The ECM is one key
feature in processing compressed images and will be used in
the next sections. By organizing ECM entries as pixels of an
image, the ECM corresponding to the test image is shown in
Fig. 9. The ECM has two basic properties.

First, the most important obstacle to perform any fast
processing over JPEG-compressed data resides on the fact that
one cannot determine where, in the compressed data stream,
a block begins before decoding the preceding bitstream. If
we could store or derive the ECM, we would be able to
easily address individual blocks, enabling operations such as

Fig. 9. ECM of the test image.

cropping, segmentation, rotation, etc. Thus, ECM provides
addressability for the compressed data.

Second, the ECM conveys information pertaining to the
activity of a block. Because of JPEG’s compression strategy,
smooth areas generate low ECM entries, while edges generate
high ECM entries. Using the ECM we take advantage of the
JPEG computation for modeling edges and such by only mea-
suring the degree of success or failure to compress a particular
block. Thus, the ECM provides edge activity information.

While those two key properties will be used in this paper, a
more complete discussion of ECM’s properties can be found
in [20].

V. SIDE INFORMATION AND EDITING

In some cases, it might be advantageous to store side-
information along with the compressed data, comprising the
ECM and auxiliary data. The amount of side-information is
variable and may depend on the compression rate and on the
desired browsing speed. For moderate compression ratios (say
12 : 1), the side information can be placed into JPEG3 without
significantly increasing the file size (compression ratio would
drop to about 10 : 1). This is a small price paid to allow image
manipulation in the compressed domain. The alternative is
to derive the side information at the decompression side by
spending computation time. One example of side information
for this purpose is: 1) the ECM encoded using any simple
format,4 2) the sum of the entries of the ECM in each row,
encoded using any simple format; 3) a decimated DC map, i.e.,
a map with DC coefficients per row of blocks. If
the decimated DC map is not stored at all. Each row of blocks
is segmented into sections and each entry in the map is
the DC coefficient of the leftmost block of each section. The
decimated DC map can be encoded using any simple format.
An illustration of this side information is given in Fig. 10.

3For example, using a comment or application field [1].
4ECM may include byte stuffing [1] or the data can be considered prefiltered

to remove stuffed bytes;

1666 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

Given the ECM and the sum of each row of it, one can easily
seek any block in the compressed data. Actually, one can easily
crop a region of the image. In Fig. 10, the sum of entries of
the ECM in a row gives the total number of bits used
to encode each block row and the ECM entries give
the amount of bits used to encode each block. The DC map
entry for row and section is denoted by . Assume
one wants to crop the region comprising blocksblock for
TOP BOTTOM, LEFT RIGHT. Let the LEFT
block of each row belong to sectionand theRIGHT block
belong to section. Set .

To crop a region and place it into a buffer, we can use
the following steps: SkipTOP rows (row 0 trough row
TOP). Perform the following steps for TOP through

BOTTOM. Skip all blocks in row until getting to the
first block of section . Let . For each block,
until reaching theLEFT block, decode the DC coefficient,
accumulate this value onto , and skip the rest of the block.
Decode the DC coefficient and accumulate this value onto.
Write as a JPEG DC value to the buffer. If the
original DC value ofblock LEFT used bits to be encoded,
write the next LEFT bits and all the bits used for
the nextRIGHT-LEFTblocks to the buffer. Set as the
actual DC value of theRIGHT block. This value is found in
the same way, by accumulating the DC values (differences) of
blocks in section onto until reaching blockRIGHT.
If is not BOTTOMskip all blocks to the end of the row and
repeat the process for the next.

The final data in the buffer will correspond to the JPEG
compressed data which would result from cropping the decom-
pressed image and recompressing it (respecting the minimum
unit of 8 8-pixels block).

There are alternative methods to manipulate JPEG com-
pressed data. In one extreme, we can use the tools provided
by JPEG, which are the restart markers. These markers are
uniquely identifiable and placed periodically in the bitstream
(period of an integer number of blocks). So, if one sets the
restart marker to blocks, one can search the data looking
only for the restart markers (and counting them) in order to
advance the file pointer to an specific position in the image. On
the other hand, we can derive pointers to the compressed data
blocks (instead of the ECM) and do some tricks to keep track
of the DC coefficients [4]. We believe the proposed method
might lie somewhere in between the two alternatives.

VI. ROTATION AND MIRRORING

Rotation and mirroring of documents are frequent operations
in the printing business. Simple operations such as rotation
by 90 (and multiples of 90), transposition and mirroring are
usually done in the spatial domain. If the image is compressed,
these operations would demand the decompression of the
image for spatial rotation. Digital document processing would
greatly benefit from the ability to rotate and mirror compressed
images because of savings in storage and computation.

More general rotation and shearing are possible in the
DCT domain [7]. In this case, the data blocks are no longer
independent and that would force us to retransform the image.

Fig. 10. Illustration of the compressed bitstream and its relation to the ECM
and DC map entries. The ECM entryECM[i; j] tells the size in bits of the
jth block of theith row of blocks. The sum of the ECM entries in theith
row (i.e.,RL[i]) is actually the length in bits of the codes composing theith
row. Each row is divided intoN sections. The DC map entryDC[i; k] gives
the actual DC value of the first block of thekth section.

It is unclear if it is simpler than it is to decompress the image
and to apply a fast rotation in space domain. In any case,
we concentrate in the subset of mirroring, transposition, and
rotation by 90, 90 , and 180 and show how they can be
easily implemented in the compressed domain.

A. Intrablock Operations

Let be the image block rotated by
90 , 90 , and 180 degrees, respectively. Also, let
and be the blocks which are a vertical and horizontal
mirrors, respectively, of . We denote by

and the transformed coefficients of
and , respectively (i.e. ,

etc.). Also, let be the 8 8 reversing matrix defined as

...
...

and let . Then, one can
check that the DCT matrix has the following property:

(8)

i.e., half of its rows are even-symmetric and half of them are
odd-symmetric. The following relations are also true:

(9)

Hence, putting all these results together we get, after some
algebraic manipulation, to

(10)

which are simple relations to rotate and mirror the block in the
DCT domain. Remember that means to change the sign of
the coefficients of every odd-numbered row of, while

DE QUEIROZ: JPEG-COMPRESSED IMAGES 1667

Fig. 11. Flow graph for block mirroring and rotation. At the top is the basic
algorithm requiring decoding and inverse zigzag prior to the operations of
changing sign and transposing. This algorithm makes it easier to apply existing
JPEG building blocks. At the bottom is the faster algorithm which decodes
one diagonal of quantized coefficients at a time, performing reversal and sign
inversion.

Fig. 12. Flow graph for each operation of block mirroring and rotation.T

means transposition.

means the same for the columns of. These operations are
trivial and would spare us from having to perform an inverse
DCT to rotate the block in space domain.

The DC coefficient is not affected by these operations and
sign change is independent of the quantization. Thus, these
operations can be applied directly to the decoded coefficients
without involving DPCM and quantization. The resulting flow-
graph for rotation-mirroring of one block of compressed data
is shown on the top of Fig. 11.

The sequence of VLD, inverse zig-zag scanning, rotation,
zig-zag scanning, plus VLC, can be further simplified. We can
decode data relative to one diagonal (according to the zig-zag
path) of the block at a time. Having the coefficients of one
diagonal in hands, we can change the necessary coefficient
signs (according to which operation is desired), reverse the
short sequence of coefficients (if transposition is needed), and
encode the coefficients again (see Fig. 11).

As a remark, the operation in diagonal data can be tricky.
The diagonals are not independent because of the counting
of zero coefficients. When one reverses the coefficients in the
diagonal, the counting may change too. This can be resolved
by storing the run-of-zeros counting before opening one diag-
onal, calculating the new counting after the data is reversed
and storing this number for the next diagonal operation.

Each operation is illustrated in Fig. 12. Note that all
operations can be hardcoded avoiding the zigzag scanning
and its inverse. For example, sign inversion of all for
odd (i.e., reversing the sign of every odd-numbered row) is
equivalent to change the sign of for

. The same can be done for
reversing the signs of the odd-numbered columns.

B. Interblock Operations

Assume an image is composed by scan lines and each
scan line is composed by several bit-strings of different sizes,
instead of fixed-bit-number pixels, i.e., an image made of
variable-length pixels. Assume the file containing the variable
length pixels is stored sequentially. Rotation and mirroring are
possible if we know how many bits are spent to encode each
pixel (i.e., if we derive or pre store the ECM). Alternatively,
we can also store the offset to reach the first bit of each pixel.
In both cases we can always readily address individual pixels
in the image.

Let the images (composed by variable size pixels) before
and after the rotation and mirroring be labeled “A” and “B,”
respectively. To generate image “B” it will be necessary to
address nonsequential positions inside image “A.” This can
be done with the aid of 32-b pointers and the map with the
number of bits spent to encode each pixel. Each pointer stores
the number of bits to seek in image “A” in order to reach
the first bit of the pixel to be placed in image “B”. Since we
know how many bits were used to encode each pixel we can
easily move the pointer pixels to the left or to the right.
Therefore, we avoid having to recalculate offsets every time
we want to address one single pixel and, at the same time, we
avoid storing a long offset pointer for every pixel in the image.
The pointers are positioned in image “A” at the beginning of
the rotation (mirroring) operation pointing to the first pixels
that will be written in image “B.” As each pixel is written,
the pointers are changed to address the next block. Of course,
the initial position and movement of these pointers depend on
which of the five operations described here will be applied.
Now, we replace the notion ofvariable size pixelby block of
compressed data.

C. Image Rotation and Mirroring

The rotation or mirroring are performed in the following
steps.

• Read compressed data, decode and reencode each block.
As the blocks are being decoded they are rotated (mir-
rored) using the fast method described.

• The DC, which is a difference between the actual DC and
the DC of the previous block is replaced by the actual DC
before writing back each block. Skip this step for all but
the first block in a row in case of vertical mirroring.

• Store the length in bits of each block (ECM) in a separate
array.

• Perform interblock rotation on the blocks already in-
ternally rotated (mirrored) placing them in their final
memory location. Write blocks in their definitive order:

1668 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

from left to right and from top to bottom of the image after
rotation (mirroring). The initial positioning and movement
of pointers for the interblock rotation are gathered from
the array with the length in bits for each block, which
was created in the previous step.

• Rewrite the DC coefficient of the blocks (as the difference
between the actual DC of a block and that of a previous
one) as the blocks are written. Skip this step for all but
the first block in a row in case of vertical mirroring.

The intermediate buffer is stored compressed. The process
is composed by simple pointer operations and fast intrablock
rotation. Therefore, this method largely saves storage and
computation.

VII. SEGMENTATION

We address the segmentation of an image into specific re-
gions such as those containing halftones, text, continuous-tone
pictures, etc., without decompressing and buffering the whole
image. The idea is to browse the compressed data to extract the
necessary information in order to perform the segmentation.
Applications include: selective postprocessing, rendering hints,
and recompression. In selective postprocessing, one can filter
background, use antiblocking filtering in contone images and
antiringing filtering near text and halftone edges. Rendering
hints are common practice in the printing business, since text
and graphics are rendered differently than contone images.
Recompression will be discussed later on.

Various segmentation and classification approaches have
been investigated and most of them are based on examining the
decompressed image and perhaps extracting high-frequency
information (edges) to localize letters, graphics, etc. Examples
are [14]–[19]: 1) decompressing the image and applying
segmentation in space domain, 2) segmenting the DC map, 3)
using the AC energy (sum of the square or of the absolute
values of the AC coefficients in a block) map. The first
implies full JPEG decompression, high computation and large
storage space. Also, blurring, ringing, and blocking artifacts
can complicate the segmentation. The DC component alone
implies a large loss in resolution within a simple framework.
The AC energy is more complex but captures intrablock
activity information. We do not address any of these but
introduce a new method combining the information regarding
high-frequency contents of the AC energy method with the
simplicity of the DC map method.

We use the ECM for segmentation because it is simple to
compute, results in a reduced image, and captures intrablock
activity. The only JPEG stage necessary is the VLD, which
does not even need to be fully implemented. If the ECM is
sent as side-information, no computation is necessary. Several
different blocks may generate the same ECM entry and the
pure histogram analysis of the ECM may not suffice for
any robust segmentation algorithm. Regions with very dense
concentration of bright pixels in the ECM may indicate a
halftone, while text letters may have its borders delimited by
bright ECM pixels, etc. The ECM corresponding to our test
image is shown in Fig. 9, where entries were converted to pixel
brightness. Halftones and tint areas are characterized by large
concentration of bright pixels. Edge of letters in text areas

are bright, thus forming a sparser distribution of bright pixels.
Contone regions contain midrange pixels with sparse bright
areas. The background is basically a dark (nonuniform) area.
A more sophisticated variation combines the ECM data with
the DC coefficients map. For example, background detection
is easily made by selecting blocks with low ECM and large
DC magnitude.

A more complete discussion of ECM-based segmentation
technique can be found in [20]. A segmentation algorithm has
to take into account classes of images (and their statistics)
as well as the quantizer table used, since both will alter
the appearance of the ECM data and affect the output. We
refrain from getting into such an extensive discussion here by
just presenting an outline of a simple segmentation algorithm
starting with the images shown in Figs. 9 and 7. We intend
to illustrate the main concepts. An example of a simple
nonadaptive segmentation algorithm based on pixel oriented
operations is now presented.

In order to detect halftone one might look for large con-
centrations of very bright pixels in the ECM. In this case,
for example, we can filter the ECM and threshold the output.
For a 3 3 averaging filter and threshold of 100 we get an
initial binary mask to work. We have to separate halftones
from the text letter edges. The difference resides on the fact
that halftones and tints are large and dense patches in the mask,
while letters and graphics are separated by background. So,
we can process the mask with binary morphological operators
[21]. First, we close the small gaps there might be in the
halftone patches using a small structuring element (e.g., 55).
This also fuses the text. We now apply one of our assumptions:
the halftone patches are much larger than text letters. For 12-
point letters, text can be eliminated by an erosive operation,
while the tint and halftone areas are just reduced. Therefore,
we can directly apply a 5 5 element in an opening operation
(erosion followed by dilation). Finally, we dilate the image a
little only to provide safety margins as well as more uniform
boundary regions. The resulting mask is shown in Fig. 13(a),
which indicates the areas of possible halftones and tints.

Background can be efficiently detected by combining the
ECM with the DC image.5 Bright DC pixels whose ECM value
is low are often part of the background. We detect background
by filtering the ECM and the DC image before comparing
the results to thresholds. Using a 33 averaging filter, the
resulting mask shown in Fig. 13(b) indicates blocks whose
filtered DC value is brighter than 220 and filtered ECM value
is below 60.

We now delete the background and halftone areas from the
original ECM and construct a mask with the remaining
entries. The task is reduced to the separation of contone regions
from text and graphics. Again, we assume contone regions
are much larger than the letter dimensions, i.e., contone is a
large dense patch while the text is not. Hence, we perform
an opening operation with a large 9 9 structuring element,
followed by some dilation in order to provide a safety margin
as well as uniform boundaries. The resulting mask is shown
in Fig. 13(c).

5DC values are scaled (divided by eight) to fit in the range 0–255.

DE QUEIROZ: JPEG-COMPRESSED IMAGES 1669

(a) (b)

(c) (d)

Fig. 13. Segmentation masks. (a) Halftone. (b) Background. (c) Contone. (d) Text and graphics.

We delete the contone regions from maskand the re-
maining mask is the mask for text and graphics which can be
optionally dilated a little for safety and to yield more uniform
boundaries. The resulting mask indicating the regions of text
and graphics is shown in Fig. 13(d). Further details in this
algorithm are found in [20].

VIII. R ECOMPRESSION

In some cases, the document may undergo a light com-
pression where it suffers virtually invisible distortion. For
storage for longer periods, one may find it suitable to further
compress the document using JPEG. Given that the document
has already been compressed we address the recompression of
an image without fully decompressing it. For this we can apply
several methods and we discuss 1) simple requantization of
the DCT coefficients, 2) thresholding [23], and 3) background
replacement.

A. Requantization

If each block is decompressed and recompressed, the quan-
tized coefficients are scaled by the respective quantizer
step round . Inverse DCT is not
necessary because the reconstructed block will be transformed
again anyway. Let the new quantizer steps be. Hence, the
reconstructed coefficients are round . This
might cause some problems if is not a multiple of . For
example, let , and . So,
and . If we have used a larger quantizer step
such as , the quantizer error would be 1.1, instead.
However, if we requantize the coefficients using , then

and the accumulated error is 1.9, which is larger than
using . This is just a reminder that rounding errors
may accumulate. There is not much that can be done in this
sense, except to better estimate the reconstructed coefficient.
We attempt to do so by assuming that for input signals with

1670 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

typical image statistics, the DCT coefficients are reasonably
modeled by a Laplacian probability density function (pdf) [2],
as

(11)

which is a zero-mean pdf with variance . If the Laplacian-
modeled variable is quantized using uniform step sizes, the
only information available to the receiver is that the original
coefficient was in the interval , where

and . The trivial solution suggested in
JPEG [1] is to reconstruct the coefficient in the center of the
interval as , which simplifies implementation. We can
assume positive values without loss of generality. The optimal
reconstruction lies in the centroid of the pdf for the interval
[22], i.e.

coth (12)

Note that it means a constant bias toward origin:
coth . For different coefficients (different step sizes

and variances) we have

coth (13)

Given the coefficient variances , we can estimate the
parameters as . The variances can be easily
calculated for a given image model [2] or can be estimated
from one or several images. Therefore, we can precalculate
all and subtract the coefficients magnitude by as

sign (14)

where sign . For example, computing the variances
directly from the test image in Fig. 5, and applying the default
luminance quantizer table we get the table (rounded to
integer) as

B. Thresholding

Thresholding is a technique intended to provide spatial
adaptivity to the quantization in JPEG [23], [24]. JPEG is
called an adaptive coder because it fixes the quantizer steps
in such a way that different coefficients demand different bit-
rates. However, the quantization process is static because the
same quantizer step is applied to all coefficients ;
therefore, the same maximum distortion is allowed to all.
Since we cannot change the quantizer entries on a block by

block basis,6 thresholding arises as a technique to examine
each quantized coefficient and to decide if it is worthwhile
(in a rate-distortion sense) to keep this coefficient or not.
If it is decided to throw away the coefficient, it is set to
zero (thresholded). The thresholding procedure can provide
adaptation in a block basis, can improve signal-to-noise ratios
(SNR’s) by 1 dB [23] and is perfectly compatible with JPEG
because the decoder does not know the thresholded coefficient
ever existed. The reader is referred to [23] for in-depth analysis
of the method and its complete description. Also, in [24] it is
combined with quantizer and VLC optimization for maximum
JPEG performance that rivals much more sophisticated coders.
We present here a simplification of the method in [23] for
speed purposes. If compression speed is not a concern, we
strongly recommend implementing the method described in
[23] and [24].

In the simplified approach, we look at each and every
nonzero quantized coefficient in a block. For a nonzero co-
efficient , assume the next nonzero coefficient in the
vector order is at index . For simplicity let ,
to avoid ZRL symbols. Let have RRRR zeros before
it and category SSSS, while has
zeros before it and category SSSS.

• The cost of sending is: b to encode RRRR/
SSSS, plus SSSS b (offset and sign—see Section II).

• The cost of sending is: b to encode RRRR/
SSSS, plus SSSS b.

• If is set to zero, the cost of sending is the
cost of sending a number with category SSSSbut with

zero samples in front of it (b),
plus SSSSb for offset and sign. includes the possible
cost of sending ZRL symbols.

Focusing on , the cost of keeping the coefficient
(not thresholding) is the cost of sending and minus
the cost of sending if .

. The benefit of not thresholding is
a decrease in reconstruction distortion. Assuming a weighted
mean-square-error measure, and using the decompressed im-
age without thresholding as a reference, this distortion is

since the DCT is orthogonal, where
are the scanned into zigzag form. The COST/BENEFIT
(rate/distortion) ratio is

(15)

is compared to a threshold and we set
whenever .

If the run of zeros amounts to more than 16, one has to
include the cost of ZRL in the above discussion, which is a
trivial task. This simplified technique by itself can improve
SNR in single compression by a proper choice of. For
recompression, it is preferable to combine thresholding with
requantization.

6Recent JPEG extensions (JPEG Part 3—ISO DIS 10 918-3) adds an
alternative quantizer table scaling factor for each block, in order to allow
MPEG compatibility. However, all step sizes are scaled by the same amount
[25].

DE QUEIROZ: JPEG-COMPRESSED IMAGES 1671

Fig. 14. Stitching problems at background boundaries. The reconstructed images are processed by a�-filter that is tuned to process pixels above a luminance
threshold close to the background region. Top: parts of the reconstructed image. Bottom: same as above after processing.

C. Background Removal

Another approach for recompression is to eliminate redun-
dant information in the document image. For example, the
background (paper) is not as smooth as one might expect and
is composed by bright ECM pixels distributed among dark
ones. Thus, several blocks spend an excessive number of bits
to encode the background.

If we use the background detection method previously
described, we can modify the compressed data to contain
smooth flat blocks on the background, hence, spending fewer
bits. In a horizontal run of consecutive background blocks,
the first block is assigned to an average value. The difference
between this value and the DC of the block right before the
run is encoded, followed by an EOB. After that, all blocks
are encoded using a precomputed symbol meaning “null DC
difference” followed by EOB. Using default luminance VLC

tables, this sequence is 001 010. The average value of the first
block in the run can be: the block’s own DC value, average
of DC values of background blocks, or a predefined value.

Using our test image, by substituting the background blocks
by flat patches of brightness 235 (value found in average for
the particular scanner settings and paper used), we increased
the compression ratio from 10.68 to 13.86. In other words,
by eliminating the background texture information we shrunk
the compressed file by almost a quarter (about 23%). In
any case, it is likely there will bestitching problems, which
are discontinuity artifacts present at the borders between two
different regions that were put together artificially. In our case,
this happens between the original and the artificial background
regions, since the original background data is present around
other objects such as text, images, etc. Fig. 14 shows two
segments of the test image after replacing the background

1672 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 12, DECEMBER 1998

by constant data. To clean the respective images, we used
a -filter in the regions surrounding the detected background
region. A -filter is an average window which just includes
neighbor samples that are within gray levels from the
center-pixel level. Furthermore, the filter is just turned on if
the center pixel is brighter than a predefined threshold, and
is located close to the background regions. In the example
shown in Fig. 14, , the neighborhood is 5 5, and the
threshold was set to 200.

IX. CONCLUSION

We presented techniques for processing compressed im-
ages. We used simple algorithms for scaling, previewing,
cropping, rotating, mirroring, segmenting, and recompressing
compressed images. Just algorithms which can lead to sub-
stantive reductions in memory requirements and complexity
were presented.

We tried to avoid discussing obvious processing derived
from the fact that DCT is a linear transform. For example, it is
obvious that the DCT of a linear combination of input blocks
will result in the same linear combination of the respective
transformed blocks. That account for fading, mixing, etc. Also,
it is simple to control image brightness by modifying the DC
coefficient. However, this method may fail for sharp edges.
Too see this, imagine that a flat block and a sharp edge can
have the same DC coefficient. If the change in brightness is
not linear, dark and bright pixels should change differently,
and that will not happen if one only operates on the DC. In
other words, brightness modifications may work for smooth
blocks, but can fail otherwise and create jagged edges. In any
case, these cases were covered elsewhere.

The goal is to save computation, therefore, to reduce costs
and increase speed, while reducing buffer (memory) costs. The
main savings come from the fact that one might be able to
use a small buffer to keep the image in compressed format.
Furthermore, the DCT is a relatively expensive process, and
by cutting JPEG basic steps we are also able to cut processing
time. It is evident that processing compressed data may
be a key to digital document processing, facilitating the
manipulation and processing of high-resolution images at a
reasonable cost. The suite of available algorithms continuously
grows. Operations such as halftoning, color correction, etc.,
will be presented in a future opportunity.

ACKNOWLEDGMENT

The author wishes to thank R. Eschbach and P. Fleckenstein
for discussions related to this paper. Dr. Eschbach introduced
the author to the topic of processing compressed images, and
the use of ECM for segmentation is found in more detail in
a joint paper [20].

REFERENCES

[1] W. B. Pennebaker and J. L. Mitchell,JPEG: Still Image Compression
Standard. New York: Van Nostrand, 1993.

[2] K. R. Rao and P. Yip,Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. New York: Academic, 1990.

[3] B. C. Smith and L. A. Rowe, “Algorithms for manipulating compressed
images,”IEEE Trans. Comput. Graph. Appl., vol. 13, Sept. 1993.

[4] R. F. Miller and S. M. Blonstein, “Compressed image virtual editing
system,” U.S. Patent 5 327 248, July 1994.

[5] M. Chen and Z. Shae. “Video mixing technique using JPEG compressed
data,” U.S. Patent 5 257 113, Oct. 1993.

[6] M. Shneier and M. Abdel-Mottaleb, “Exploiting the JPEG compression
scheme for image retrieval,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 18, pp. 849–853, Aug. 1996.

[7] B. Shen and I. K. Sethi, “Scanline algorithms in the JPEG DCT
compressed domain,”J. Electron. Imag., vol. 5, pp. 182–190, Apr. 1996.

[8] P. P. Vaidyanathan,Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[9] R. L. de Queiroz and R. Eschbach, “Fast downscaled inverses for images
compressed withM -channel lapped transforms,”IEEE Trans. Image
Processing, vol. 6, pp. 794–807, June 1997.

[10] J. M. Adantet al., “Block operations in digital signal processing with
applications to TV coding,”Signal Process., vol. 13, pp. 285–397, Dec.
1987.

[11] K. N. Ngan, “Experiments on 2D decimation in time and orthogonal
transform domains,”Signal Process., vol. 11, pp. 249–263, Oct. 1986.

[12] B. Natarajan and B. Vasudev, “A fast approximate algorithm for scaling
down digital images in the DCT domain,” inProc. IEEE Int. Conf. on
Image Processing, Washington, DC, 1995, vol. II, pp. 241–243.

[13] S. Martucci, “Image resizing in the DCT domain,” inProc. IEEE Int.
Conf. on Image Processing, Washington, DC, 1995, vol. II, pp. 244–247.

[14] H. T. Fung and K. J. Parker, “Segmentation of scanned documents
for efficient compression,” inProc. SPIE: Visual Communications and
Image Processing, Orlando, FL, 1996, vol. 2727, pp. 701–712.

[15] S. N. Srihari, “Document image understanding,” inProc. Int. Symp.
Circuits and Systems, 1986, pp. 87–96.

[16] T. Pavlidis and J. Zhou, “Page segmentation and classification,”CVGIP:
Graph. Models Image Process., vol. 54, pp. 484–496, Nov. 1992.

[17] D. Dunn, T. Weldon, and W. Higgins, “Extracting halftones from printed
documents using texture analysis,” inProc. Int. Conf. Image Processing,
Lausanne, Switzerland, 1996, vol. II, pp. 225–228.

[18] K. Murata, “Image data compression and expansion apparatus, and
image area discrimination apparatus,” U.S. Patent 5 535 013, July 1996.

[19] Z. Fan, “Segmentation-based JPEG image artifacts reduction,” U.S.
Patent 5,495,538, Feb., 1996.

[20] R. de Queiroz and R. Eschbach, “Fast segmentation of JPEG-
compressed documents,”J. Electron. Imag., vol. 7, pp. 367–377, Apr.
1998.

[21] E. R. Dougherty,An Introduction to Morphological Image Processing,
vol. TT9. Bellingham, WA: SPIE Press, 1992.

[22] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Boston, MA: Kluwer, 1992.

[23] K. Ramchandran and M. Vetterli, “Rate-distortion optimal fast thresh-
olding with complete JPEG-MPEG decoder compatibility,”IEEE Trans.
Image Processing, vol. 3, pp. 700–704, Sept. 1994.

[24] M. Crouse and K. Ramchandran, “Joint thresholding and quantizer
selection for decoder compatible baseline JPEG,” inProc. Int. Conf.
Acoustics, Speech, and Signal Processing, Detroit, MI, 1995, vol. 4, pp.
2991–2994.

[25] D. Lee, “JPEG: New enhancements and future prospects,” inProc.
IS&T’s 48th Annu. Conf., Track I—Imaging on the Information Super-
highway,1995, pp. 58–62.

Ricardo L. de Queiroz (S’89–M’95) received the
B.S. degree from Universidade de Brasilia, Brazil, in
1987, the M.S. degree from Universidade Estadual
de Campinas, Brazil, in 1990, and the Ph.D. degree
from University of Texas at Arlington, in 1994, all
in electrical engineering.

From 1990 to 1991, he was a Research Associate
with the DSP research group at Universidade de
Brasilia. In 1994, he became a Teaching Assistant in
the Electrical Engineering Department, University
of Texas at Arlington. He joined Xerox Corporation,

Webster, NY, in August 1994, where he is currently a Member of the Research
Staff at the Color and Digital Imaging Systems Laboratory. His research
interests are multirate signal processing and filterbanks, image and signal
compression, color imaging, and processing of compressed images.

Dr. de Queiroz is currently Vice-Chair of the Rochester Chapter of the
IEEE Signal Processing Society. He received the Academic Excellence Award
in 1993 from the Electrical Engineering Department, University of Texas at
Arlington.

