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Attention-Weighted Texture and Depth
Bit-Allocation in General-Geometry

Free-Viewpoint Television
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Abstract—In a free-viewpoint television network, each
viewer chooses its point of view from which to watch a scene.
We use the concept of total observed distortion, wherein
we aim to minimize the distortion of the view observed by
the viewers as opposed to the distortion of each camera, to
develop an optimized bit-rate allocation for each camera. Our
attention-weighted approach effectively gives more bits to
the cameras which are more watched. The more concentrated
the viewer distribution, the larger the bit-rate savings, for
a given total observed distortion, compared to the uniform
rate allocation. We analyze and model the distortion of
a synthesized view as a function of the distortions (both
in texture and/or depth) of the nearby cameras. Based on
such models, we develop optimal rate-allocation methods
for texture images, considering a uniform bit allocation
for depth, and for both texture and depth simultaneously.
Simulation results are shown, demonstrating not only the
correctness of the optimized solution, but also measuring
its improvement against uniform rate allocation for a few
viewer distributions.

Index Terms—Free-viewpoint television, rate allocation,
attention weighting.

I. Introduction

IN Free-Viewpoint Television (FTV) [1] a viewer can
observe a remote three-dimensional (3D) scene by

freely changing its viewpoint. This media can offer a
continuum of selectable viewing positions, broadcast to
a possibly very large audience. The scene, however, is
generally captured by a finite number of cameras.

We envision a broadcast FTV system wherein N cam-
eras are placed in an event, for example in a sports arena,
and there are M viewers watching the program. Each
camera generates texture video imagery and depth maps
[2] as well. In a sense, each camera is both a texture (or
color) camera and a depth map camera, and all captured
information is broadcast over a network (e.g., Internet
or a private one) to the viewers, as depicted in Fig. 1.
Each viewer can then freely choose its own viewpoint.
If there are no cameras which coincide with the viewer
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selected position, the service should synthesize the re-
quired view. We adopt the common depth-image based
rendering (DIBR) approach [3], [4] to view synthesis. In
the envisioned system, synthesis should occur anywhere
in the network, probably closer to the end user, or within
the end user’s terminal. There is a provision for a slower
feedback channel, regularly informing the encoder side
at which position each viewer is watching the scene.

All cameras are then compressed with a given quality
(bit-rate) and all camera streams are potentially broad-
cast to everyone in the viewer network. The question we
ask ourselves and address here is how to allocate bits
among all the camera compressors. When we refer to bit
allocation among cameras, we mean the bit allocation
of their respective compressors. The uniform allocation
is the one in which all cameras are allocated the same
distortion (or same bit-rate). We want to allocate more
bits to the cameras that are more watched, i.e., either
directly watched or involved in synthesis of requested
viewpoints. In an extreme, if no viewer is watching or
using a given camera, there may be no need to transmit
it at all. This approach, in the FTV context, is called
attention-weighted bit allocation. Our development is
guided by the minimization of distortions of views ob-
served by all end users, referred to as the total observed
distortion.

Previous work on attention-weighted allocation of bit-
rate across multiple views was initiated in [5]. The
authors consider a multiview video coding scenario but
do not address view synthesis. In [6], the authors pro-
pose attention-weighted rate allocation for texture in an
FTV system. The proposal is developed for a regularly-
spaced one-dimensional camera arrangement. In [7], rate
allocation for texture was extended to general, possibly
two-dimensional, camera arrays. However, these works
do not consider an optimal allocation for depth maps. In
[6] depth maps were uniformly coded (i.e., with constant
quantization parameter) across all cameras whereas in
[7] depth maps were assumed to be available in loss-
less form. In specific coding conditions [8], texture can
comprise the greater portion of the overall bitstream,
while the rate overhead of the depth video encodings
may be kept relatively low. Further reduction of depth
overhead may be achieved with dedicated, although
non-standardized, coding techniques [9], [10] and certain
FTV architectures [1] can altogether avoid depth trans-
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mission by relegating to the end user the task of depth
estimation. Nevertheless, in a general FTV broadcast
system, depth maps can account for a substantial part
of network traffic.

We consider depth maps, along with texture im-
ages, and model effects of their distortions upon ob-
served view distortion. In particular, we consider ef-
fects of asymmetric distortions arising from non-uniform
bit allocations. Based on such models, we develop an
attention-weighted rate allocation technique for texture
images and propose a joint technique for both texture
and depth cameras. The procedures are cast within a
general-geometry framework, allowing multiple cam-
eras at arbitrary positions, as envisioned for the FTV
system. System performance is demonstrated for a few
viewer distributions on publicly available data sets
containing regularly-spaced, one- and two-dimensional
camera arrangements. We only consider multicasting the
N video streams compressed independently with, for
example, H.264/AVC [11], rather than using multiview
plus depth extensions, such as 3D-AVC [12], since the
independence of the views would facilitate the transport
of only a few camera streams over sub-networks. Fur-
thermore, multiview extensions such as 3D-AVC require
a single, centralized coder which may be unfeasible
when dealing with a large number of dispersed cameras.
We compare our results to those of 3D-AVC. Other
compression alternatives, such as HEVC [13], are also
viable within our framework.

We have intentionally left network and routing issues
out of this work. For example, three issues will be
addressed elsewhere to preserve the length and focus of
this text. Firstly, is how and where, within a possibly
heterogeneous network, to synthesize views, in order
to single-stream the synthetic view to the subscriber.
Secondly, sub-networks may mirror the overall rate-
allocation problem, so that the N camera streams could
potentially be transcoded to fit the attention distribution
of the sub-network. In an extreme, sub-networks who do
not require all the camera viewpoints need not receive all
the camera streams. Thirdly, scheduling can be weighted
by viewer attention as well.

A few works (e.g., [14]–[17]) address rate allocation in
the context of multiview video. Nevertheless the distor-
tion considered was the video content distortion and not
the total observed distortion that we propose. The work
in [5] also addresses attention-weighted bit allocation,
although without considering view synthesis, and its
motivation is closer to ours here. The traditional bit-
rate allocation approaches consider camera distortions as
independent. We, however, consider the observed view
distortion and this allows us to differentiate importance
among cameras prior to rate allocation. Traditional rate
allocation, within our perspective, is equivalent to as-
suming a uniform distribution of viewers, for example,
a single viewer at each camera.

Our work is based on the ideas in [6], however, that
work was inspired by others on free-viewpoint video

such as [18] and [19]. In these single-user free-viewpoint
approaches, one tries to send just a few (ideally two)
viewpoints. However, as the viewer changes viewpoint,
discontinuity may be observed. They use head-tracking
to evaluate viewpoint and to predict the next one, in
order to smooth the transitions and to increase the qual-
ity of experience. Another attention-driven approach,
but also for a single consumer, was described in [20].
In it, they propose a proprietary video coder based on
known image and video coding tools, combined with
a scalable multiview video approach. As with [18] and
[19], in [20] one tries to anticipate the single viewer
viewpoint selection. In another very relevant work [21],
a cubic distortion model for estimating the distortion of
synthetic views in a one-dimensional camera arrange-
ment was proposed. We propose alternative models,
i.e., two different linear models to relate texture and
depth distortions to the distortion of the synthetic view.
Our models consider asymmetric distortions occurring
in texture or depth, as well as their relative importance
towards synthesis. Unlike [21], our models are applied
in data sets with lower quality depth maps. Asymmetric
coding, in the context of 3D video, has been subject of
assessment in [22], [23]. In a very recent paper [24], in
some sense concurrent to the present work, the authors
also study the case of multiple viewers. They base their
work on the proprietary coders in [20] and extend the
concept to make a source-channel rate allocation prob-
lem for multiple viewers. As they state the problem quite
differently from [6], they resort to a full search over a
large space to find their solutions. Our approach and
solution differs entirely in many aspects as they consider
joint source and channel allocation and employ the view
synthesis distortion models from [21].

Of paramount importance, in this development, is to
properly model the distortion of a synthesized view
using texture images and/or depth maps of asymmetric
quality, and we do that in Sec. II. With the distortion
model and borrowing from known rate-distortion op-
timization techniques, we develop an optimized rate-
allocation algorithm for texture cameras in Sec. III and
for both texture and depth in Sec. IV. Experimental re-
sults are presented in Sec. V, followed by the conclusions
of the present work.

II. A view synthesis distortion model

As mentioned, we adopt the common DIBR [3] ap-
proach to synthesize free-viewpoint images. We label
viewpoints, captured by any of N cameras, as ~c j. Each
captured viewpoint is associated to texture (or color) and
depth image [2] components, whose pixel values are de-
noted p j(x, y) and d j(x, y), respectively. Adjacent captured
images are used to synthesize a virtual texture image
at viewpoint ~vm through the weighted blending [25] of
projected pixels pm| j(x

′, y′) such that

pm(x′, y′) =
∑

j∈Ψm

βmj pm| j(x
′, y′) (1)
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Fig. 1. General architecture for broadcast FTV using cloud services.
Viewer attention feedback is used to determine optimal rate allocation
among cameras.

where Ψm is the set of indices of cameras used in
synthesis at virtual viewpoint ~vm, and βmj are the camera
blending weights which guarantee that, when available,
projections from cameras closer to synthesis position are
given greater relevance.

Depth information d j(x, y) is appropriately scaled into
disparity values and used in determining correspon-
dences between pixels of viewpoints ~c j and ~vm such that

pm| j(x
′, y′) = p j

(

x + kgx(~vm,~c j)d j(x, y),

y + kgy(~vm,~c j)d j(x, y)
)

.
(2)

The k component of the depth scaling factor represents
intrinsic camera parameters, such as focal length and
depth normalization constants [25]. Distances between
viewpoints also take part in depth to disparity scaling.
They are represented in their x- and y-components, re-
spectively, by distance measures gx(~vm,~c j) and gy(~vm,~c j).
Note that common camera configurations are often con-
fined to one-dimensional (collinear or arc) setups in
which adjacent cameras are to the left and right of
synthesis position and associated disparity values are re-
stricted to horizontal shifts along the x-axis. Our general-
geometry framework does not impose limits on the
number of associated cameras nor their positioning.

The blending weights assume the influence of a given
camera to be inversely related to its distance from the
desired viewpoint. As weights, 0 ≤ βmj ≤ 1 and, for a
given synthesis position,

∑

j βmj = 1. In order to define
βmj we use the following auxiliary weight:

αmj =



















1 if viewpoint at ~vm uses camera at ~c j

for synthesis,
0 else

(3)

and an absolute distance measure between viewpoints:
g(~vm,~c j) = g(~c j, ~vm). The blending weight used to ponder
pixels projected from camera at viewpoint ~c j is thus
given by

βmj =
1/g(~vm,~c j)

∑N−1
k=0 αmk/g(~vm,~ck)

(4)

for g(~vm,~ck) , 0. The closer ~c j is to ~vm, the larger βmj, until

the point that the views coincide. In this case, g(~vm,~c j) =
0 and βmj = 1, by definition, with all others βmk = 0 for
k , j. In one-dimensional setups with cameras to the left
and right of the synthesized view, blending weights for
each of the two cameras may be reduced to the form
(1 − h) and h, respectively, where h is the distance from
synthesis position to the left camera normalized by the
camera baseline distance.

A. Distance-based distortion model for texture

Consider texture error ǫ (e.g., coding artifact) in a
captured texture image at viewpoint ~c j. The erred pixel
is given by

p̃ j(x, y) = p j(x, y) + ǫ j(x, y) . (5)

Projection of p̃ j(x, y) onto a virtual viewpoint through
(2) entails projections of both p j(x, y) and ǫ j(x, y) such
that the synthesized pixel becomes

p̃m(x′, y′) =
∑

j∈Ψm

βmj p̃m| j(x
′, y′)

=
∑

j∈Ψm

βmjpm| j(x
′, y′) +

∑

j∈Ψm

βmjǫm| j(x
′, y′).

(6)

In other words, texture distortion within a captured
image is also subject to weighted blending. As such,
given texture images from multiple cameras, one expects
distortions within images closer to the virtual viewpoint
to have a greater impact on synthesis.

This distance-dependent effect of texture distortion on
resulting synthesis may be observed in Fig. 2. Cameras 3
(left) and 5 (right) of the Poznan Street data set [26] were
used to synthesize views at various intermediate posi-
tions. Distortion was imposed on the captured texture
images through compression with various combinations
of quantization parameters (QP). (Further simulation
details may be found in Sec. V.) First, observe that
an increase in distortion of both left and right texture
images (e.g., from both at QP=22 to both at QP=37)
produces an increase in distortion (lower PSNR) across
all synthesized intermediate views. Consider now an
asymmetric distortion profile with greater distortion in
the left texture image (QP=37) relative to right (QP=22).
As synthesis position distances itself from the left cam-
era’s influence (position 3 towards 5), there is a clear
increase in quality and PSNR as exemplified in Fig. 2.
As expected, when the quality asymmetry is reversed,
the image quality drops as synthesis occurs from left to
right.

B. Distortion model for depth

Differently from texture distortions, the effects of
depth distortions are only indirectly observed upon syn-
thesized views. An error in depth pixel value of the form
d̂ j(x, y) = d j(x, y) + ε j(x, y) leads to disparity error, i.e., a
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Fig. 2. PSNR of views synthesized from symmetrically and asymmet-
rically compressed texture images (cameras 3 and 5), using all depth
maps compressed with QP=22, at various intermediate positions.
PSNR is relative to synthesis from uncompressed images.

displacement in the position of projected pixels used in
view synthesis, such that

p̂m(x′, y′) =
∑

j∈Ψm

βmjp j

[

x + kgx(~vm,~c j)(d j(x, y) + ε j(x, y)),

y + kgy(~vm,~c j)(d j(x, y) + ε j(x, y))
]

.
(7)

In general, larger disparity errors cause larger distor-
tion in synthesized view as spatial correlation of pro-
jections is degraded by displacements. Effects of depth
distortion on synthesis are also subject to factors such
as scene content and camera parameters. Synthesis dis-
tortion has been modeled in [27] as a linear function
of disparity error, subject to a constant scaling factor s.
Under this model, (7) may be expressed as a sum of a
projected pixels term and a scaled disparity error term

p̂m(x, y) =
∑

j∈Ψm

βmjpm| j +
∑

j∈Ψm

βmjs[kg(~vm,~c j)ε j(x, y)] . (8)

Note that the scaled disparity error term is also subject
to weighted blending. Here, the depth error ε j(x, y) is
multiplied by g(~vm,~c j) and by βmj, which in turn has been
defined as inversely proportional to g(~vm,~c j) in (4). We
assume projections from multiple cameras are generally
available for synthesis and that these are subject to
weighted blending. Under this condition, unlike texture
errors, the effects of depth error upon synthesis are in
essence independent of the distance between viewpoints.
This property is illustrated in Fig. 3. Views are synthe-
sized at numerous intermediate positions for the Poznan
Street data set as captured depth maps are subject to
various compression combinations. The imposition of
symmetric distortions in both left and right depth maps
(e.g., from both at QP=2 to both at QP=8) produces
a clear drop in PSNR across all synthesized views.
Furthermore, asymmetric distortion conditions among

left and right depth maps (e.g., QP=2 and QP=8 for the
left and right cameras, or QP=8 and QP=2 for the left
and right cameras) lead to approximately equal synthesis
distortions regardless of the proximity or distance of the
view from the camera. This is observed with depth maps
of greater or lesser distortion.
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Fig. 3. PSNR of views synthesized from symmetrically and asymmet-
rically compressed depth maps (cameras 3 and 5), using all texture
images compressed with QP=22, at various intermediate positions.
PSNR is relative to synthesis from uncompressed images.

C. Texture and depth distortion ratio

As expressed by (6) and (8), synthesis distortion is
directly proportional to texture distortion and to depth
distortion within captured images. Nevertheless, dis-
tortions in texture and depth contribute in different
degrees towards synthesis, depending on scene content
and camera parameters. The relative importance of each
of these components, or texture-to-depth ratio η, towards
view synthesis can be empirically determined. We il-
lustrate the procedure with synthesis results from the
Poznan Street sequence. Fig. 4(a) presents a surface plot
of synthesized view distortion for a range of texture and
depth distortions. In this case, view 4 is synthesized
from compressed images of cameras 3 and 5. For a
given synthesis distortion, the relative importance of
texture and depth distortions may be estimated through
the inclination of the corresponding level curve upon
the distortion surface. The curve is modeled by linear
regression, with least squares-fitting, and its inclination
is represented by the resulting line’s slope. Texture-to-
depth ratio is assumed as the average slope of the level
curves within the tested range. The average slope of
the curves depicted in Fig. 4(b) suggests, in this case,
that η = 8.6. Once a texture-to-depth ratio has been
determined, contributions of each component may be
combined towards establishing synthesis distortion.

III. General Rate Allocation for Texture

Texture from each camera video, say the n-th cam-
era, is compressed and transmitted using, for example,
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Fig. 4. (a) MSE of synthesis of Poznan Street (view 4) from coded
images (cameras 3 and 5) with respect to synthesis from original images
for various texture and depth distortions and (b) associated level
curves. Left and right texture (and depth) pairs are coded with same
QP within the range 1-37 (and 1-27). Distortion of coded texture/depth
pairs in terms of overall MSE relative to original texture/depth image.

H.264/AVC [28] with a given QP, spending an encoding
bit-rate Rt

n and achieving a distortion Dt
n. Each viewer

observes a synthetic image, synthesized from the video
of cameras operating near the selected virtual viewpoint.
For each virtual viewpoint, from a total of M viewers, we
can assign a distortion δm which tells us the distortion
incurred by the view when the camera texture videos
are compressed.

We argue that the {Dt
n} are not directly relevant and

what is of real importance are the observed distortions
{δm} which are experienced by the viewers, who are the
actual consumers in the process. In this context, we want
to minimize the overall rate

R =

N−1
∑

n=0

Rt
n (9)

while also minimizing the total observed distortion

D =

M−1
∑

m=0

δm . (10)

The optimization may be achieved by minimizing the
cost function J = R+λD, where λ is a Lagrangian multi-
plier to control the overall rate-distortion trade-off [29],
[30]. For that, the mechanisms we have at our disposal
are the selection of the QP for each camera compressor,
which controls the individual Rt

n × Dt
n trade-off. Note

that we ignored the rate used for the transmission of
the M feedback channels for two reasons. Firstly, they
are not dependent on the compression and, secondly,
the feedback transmission rate of viewer position can
be kept very low, having reduced impact.

It is natural that for synthesizing a given viewpoint
~vm we would use a few cameras, for example two in
a linear arrangement: those immediately to the left and
right of the requested viewpoint. Additionally employ-
ing other cameras, at greater distances, provides only
marginal contributions to synthesis quality [31]. Assum-
ing proportionality between observed view distortion
and distortions in the captured texture views, the former
is approximated as a linear combination of the latter such
that

δm =
∑

j∈Ψm

w j Dt
j (11)

where w j are respective weights (0 ≤ w j ≤ 1 and
∑

w j = 1). Moreover, as noted in the observations per-
taining to (6), the influence of texture distortion from a
given camera is distance-based, in which its contribution
to observed distortion is inversely proportional to its
distance from the desired viewpoint. Thus, we express
w j in terms of αmj and βmj and distortions of synthesized
views as

δm =

N−1
∑

n=0

αmn βmn Dt
n (12)

and

D =

M−1
∑

m=0

N−1
∑

n=0

αmn βmn Dt
n . (13)

If we define

φn =

M−1
∑

m=0

αmn βmn , (14)

then

D =

N−1
∑

n=0

φn Dt
n =

N−1
∑

n=0

D̃n . (15)

One can view the above equation as a sum of adjusted
distortion measures {D̃n} for each camera, which take
into account all the viewers. The cost function we seek
to minimize is now
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J = R + λD =

N−1
∑

n=0

(Rt
n + λD̃n). (16)

Optimal bit allocation is found by adjusting the QP, at
each camera compressor, in order to minimize

Jt
n = Rt

n + λφnDt
n. (17)

A. Special case of regularly-spaced camera arrangements

In the special case of regularly-spaced cameras in
one dimension (in a line or arc), we can normalize
distances to the interval between cameras and measure
all distances from the first camera, such that viewpoints
{~vi} and {~ci} can be described as scalars indicating the
position in the path of cameras and viewpoints. Then,
0 ≤ vk, ck ≤ N − 1, g(ck, ck−1) = 1, and ck = k. Let us
separate integer and fractional parts of a viewpoint as
sk = ⌊vk⌋ and qk = vk − sk. Hence, vk is synthesized from
cameras at sk and sk + 1, such that g(csk

, vk) = qk and
g(csk+1, vk) = 1 − qk.

The distortion associated with the k-th viewpoint is
simply

δk = (1 − qk)Dsk
+ qkDsk+1, (18)

such that αi j = 0 except for

αi,si
= αi,si+1 = 1 . (19)

Also,
βi,si
= 1 − qi and βi,si+1 = qi (20)

which is the linear-arrangement case described in [6].

B. Extreme cases

There are two extreme cases. Firstly, the proposed
bit allocation would not improve the total observed
distortion in the case of uniform distribution of viewers,
i.e., where selected viewpoint distribution is analogous
within every inter-camera interval. This would imply
that all cameras (apart from the peripheral) receive ex-
actly the same influence from viewers and, thus, have
equal weights for their distortion. Therefore, each camera
would have equally important distortion and the uni-
form bit allocation should be optimal. Secondly, in the
other extreme, if there is only one camera being watched,
no other camera is transmitted and we may re-allocate
all their bit budgets to the camera being watched. This
would result in the largest gain in optimizing the bit
allocation for the cameras.

IV. Rate Allocation for Texture and Depth

The free-viewpoint video transmission of texture im-
ages may be accompanied by the transmission of cor-
responding depth maps. In this case, each depth map
video is also subject to compression using, for example,
H.264/AVC [28] with a given QP, spending an encoding
bit-rate Rd

n and achieving a distortion Dd
n. Our problem

now consists of minimizing overall rate of captured
texture and depth views

R =

N−1
∑

n=0

(Rt
n + Rd

n) (21)

subject to a total observed distortion

D =

M−1
∑

m=0

∆m (22)

where ∆m is the observed view distortion, experienced
by the viewers, resulting from the compression of both
texture and depth maps used in view synthesis.

Our model of observed view distortion is proportional
to both the distortions of the captured texture views and
those of the captured depth views such that

∆m =
∑

j∈Ψm

(

w j Dt
j + η ω j Dd

j

)

(23)

where η is the texture-to-depth ratio, which weighs the
relative importance of texture distortion with respect to
that of depth distortion towards synthesis, and ω j are
the captured depth distortion weights (0 ≤ ω j ≤ 1 and
∑

ω j = 1).
Unlike texture distortion, we assume the influence of

depth distortion of each camera upon the synthesis at ~vm

to be equal, regardless of distances between camera and
~vm, as discussed in Sec. II-B. Thus, ω j may be expressed
in terms of ‖Ψm‖ (the number of cameras in Ψm) and
auxiliary variable αmj, while w j is still a distance-based
weight involving βmj. The observed view distortion is
then given by

∆m =

N−1
∑

n=0

(

αmn βmn Dt
n + η αmn

1

‖Ψm‖
Dd

n

)

(24)

and the total observed distortion is

D =

M−1
∑

m=0

( N−1
∑

n=0

(

αmn βmn Dt
n + η αmn

1

‖Ψm‖
Dd

n

)

)

. (25)

Using (14) and defining

ϕn = η
M−1
∑

m=0

αmn

‖Ψm‖
, (26)

we have the total observed distortion

D =

N−1
∑

n=0

(

φn Dt
n + ϕn Dd

n

)

=

N−1
∑

n=0

D̃n (27)

as a function of adjusted distortion measures for each
camera {D̃n} which take into account all viewers as
well as a appropriately weighted distortion contributions
from both texture and depth cameras.

Optimal bit allocation is thus achieved by minimizing
the cost function
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J = R + λD =
N−1
∑

n=0

(Rt
n + Rd

n + λD̃n) (28)

for a given Lagrangian multiplier λ responsible for the
rate-distortion trade-off. Texture- and depth-dependent
components of the cost function are treated indepen-
dently and, at each camera compressor, bit allocation is
found by adjusting QP for texture cameras in order to
minimize

Jt
n = Rt

n + λφnDt
n (29)

and adjusting QP for depth cameras to minimize

Jd
n = Rd

n + λϕnDd
n . (30)

V. Experimental Results

We simulated the proposed optimization algorithms,
comparing them to uniform rate allocation, for several
examples. We have chosen publicly available data sets
containing large numbers of cameras, thus affording
greater freedom in viewpoint selection. Motivated by
the broadcast nature of the envisioned application, we
consider large numbers of viewers. We present here a
few illustrative cases. Three different viewer attention
distributions were used. In each one, viewer position is
randomly chosen according to a given distribution and,
for each viewer position, an appropriate set of cameras
is selected for the desired view synthesis. Cameras,
therefore, may be watched (or referenced) by different
numbers of viewers. The camera usage statistics, for
given instantiations of viewer distribution, are repre-
sented in the form of histograms.

Two distributions are based on the Pantomime multi-
view sequence (1280×960-pixels resolution) data set [32]
with even numbered cameras in the range 20-58. This
data set corresponds to a one-dimensional regularly-
spaced camera arrangement. In the first case, we sim-
ulated a bimodal Gaussian distribution of 200 and 300
viewers centered at cameras 29 and 49 with standard
deviations 5 and 4, respectively. Fig. 5 depicts the corre-
sponding camera usage histogram. In the second case,
we simulated a sharper Laplacian distribution of 400
viewpoints with mean 37 and standard deviation 3, as
shown in Fig. 6.

The third distribution is based on the Akko & Kayo
multiview sequence (640×480-pixels resolution) data set
[33]. We selected the cameras originally labeled 27-29,
47-49 and 67-69 with accompanying depth maps to
form a two-dimensional (2D) distribution. Each group of
cameras is regularly distributed across one of three rows
with 5 cm of horizontal and 20 cm of vertical spacing
among them. A total of 400 viewpoints are randomly
spread according to a Gaussian distribution centered at
coordinates (3.75, 15) cm from the origin, set at camera
27, and standard deviation of (2, 7.5) cm in horizontal
and vertical directions. Synthesis is allowed at arbitrary
positions along lines between horizontally, vertically or

diagonally adjacent cameras. An instantiation of viewer
attention distribution among cameras is shown in Fig. 7.
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Fig. 5. Bimodal Gaussian distribution of viewer attention over 1D
camera setup for Pantomime.
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Fig. 6. Laplacian distribution of viewer attention over 1D camera
setup for Pantomime.

In our proposed algorithms, each texture camera
and each depth camera are compressed independently
with H.264/AVC JM Reference Software v17.2 [34]. Free-
viewpoint images are formed through DIBR with MPEG
View Synthesis Reference Software v3.5 [35]. Distortion
is measured in terms of the MSE between viewpoints
synthesized from compressed and uncompressed adja-
cent camera views. Total observed distortion is taken
as the MSE across all M viewpoints and reported in
terms of PSNR. Overall bit-rate considers the sum of
all N texture camera rates and, when encoded, all N
depth camera rates as well. Bit-rate is reported in terms
of bits per pixel per camera (bpc) for the first frame
of each view. Comparisons of our proposals are drawn
against the Uniform Allocation in which all cameras are
subject to the same distortion (or same bit-rate) and
employ equal QPs. In this case, texture QPs are selected
from the range {17, 22, 27, 32, 37} and depth QPs, when
encoded, from the range {2, 3, 4, 5, 6}. The depth QP range
was chosen to secure proportionality between depth
distortions and observed view distortion for the tested
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Fig. 7. Gaussian distribution of viewer attention over 2D camera array
for Akko & Kayo.

TABLE I
Average PSNR gains and bit-rate savings [37] of Texture Model
relative to Uniform Allocation for various viewer distributions.

Distribution Avg. PSNR gain Avg. rate savings
Bimodal 0.48 dB 9.2 %
Laplacian 2.41 dB 39.3 %
2D Gaussian 1.54 dB 24.5 %

sequences. Note that for data sets with low quality depth
maps, large depth QP ranges may include particular
quantization levels which can violate our proportionality
assumption. In specific cases, certain larger QP value
(such as suggested in [36]) were observed to improve
synthesis distortion with respect to lower QP values by
contributing to depth noise removal.

We first examine the attention-weighted rate allocation
for texture, termed the Texture Model, presented in Sec.
III. In it, depth maps are assumed available at the
decoder. The maps are applied in uncompressed form
towards DIBR and are not considered in overall bit-rate
calculations. Results are summarized in Table I. With
the bimodal Gaussian instantiation, the Texture Model
achieves average PSNR gain of 0.48 dB and bit-rate
savings of 9.2% relative to the Uniform Allocation case,
as shown in Fig. 8. Of all tested viewer distributions,
the sharper Laplacian instantiation produces the largest
average PSNR gains and bit-rate savings, 2.41 dB and
39.3%, respectively, as pictured in Fig. 9. For the 2D dis-
tribution case, overall rate and total observed distortions
are presented in Fig. 10. The Texture Model achieves an
average PSNR gain of 1.54 dB and bit-rate savings of
24.5% over Uniform Allocation.

We then carried out tests for rate allocation of both
texture and depth, referred to as Texture plus Depth
Model, developed in Sec. IV. In these comparisons, both
the Uniform Allocation and the Texture Model employ
uniformly coded depth maps (same QP for all cameras).
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Fig. 8. Overall R-D performance comparison between Texture Model
and Uniform Allocation for Pantomime with bimodal Gaussian viewer
distribution.
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Fig. 9. Overall R-D performance comparison between Texture Model
and Uniform Allocation for Pantomime with Laplacian viewer distribu-
tion.

Depth map bit-rate is considered as part of the overall
bit-rate. For the distributions using the Pantomime data
set we used η = 1000, while for Akko & Kayo we used
η = 200. Each value was determined from analysis
of a synthesis distortion surface for a single view, as
described in Sec. II-C. Results for the bimodal Gaussian
distribution are shown in Fig. 11. The Texture plus Depth
Model achieves significant gains over Uniform Allocation
as well as the Texture Model, yielding average 24.7%
bit-rate savings and gains of 2.11 dB over the Uniform
case, as summarized in Tables II and III. Note that the
Texture Model is similar to the allocations proposed in
[6] and [7] where depth cameras employ a uniform QP.
The Laplacian distribution yields the largest gains of the
proposed approach and the results are shown in Fig.
12. Average PSNR gains of 3.18 dB and 28.7% bit-rate
savings were achieved for this distribution. More modest
gains for the Texture plus Depth Model over both Uniform
Allocation and Texture Model for the 2D distribution can
be observed in Fig. 13. This may be attributable to a
flatter viewer distribution and the large variability of η in
a camera setup where vertical baselines are significantly
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Fig. 10. Overall R-D performance comparison between Texture Model
and Uniform Allocation for Akko & Kayo with Gaussian viewer distri-
bution.

larger than horizontal ones.
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Fig. 11. Overall R-D performance comparison between Texture plus
Depth Model, Texture Model and Uniform Allocation for Pantomime with
bimodal Gaussian viewer distribution.

TABLE II
Average PSNR gains of Texture Model and Texture plus Depth Model
relative to Uniform Allocation, using compressed depth maps, for

various viewer distributions.

Distribution Texture Model Texture + Depth
Bimodal 0.33 dB 2.11 dB
Laplacian 1.58 dB 3.18 dB
2D Gaussian 1.16 dB 1.64 dB

Visual results are shown in Fig. 14 for Pantomime
under the Laplacian distribution. Detail crops of syn-
thesized images from the central portion (view 37) of
the attention profile, see Fig. 6, are presented along
with those from the periphery (view 27) which receive
less attention. The largest subjective quality differences
may be observed between views 37 and 27, in Figs.
14 (d) and (c), respectively, synthesized from attention-
weighted allocation, under the Texture plus Depth Model.
Quality differences among synthesized images resulting
from Uniform Allocation, in Figs. 14 (a) and (b), are less
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Fig. 12. Overall R-D performance comparison between Texture plus
Depth Model, Texture Model and Uniform Allocation for Pantomime with
Laplacian viewer distribution.
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Fig. 13. Overall R-D performance comparison between Texture plus
Depth Model, Texture Model and Uniform Allocation for Akko & Kayo with
Gaussian viewer distribution.

noticeable. For views that are more watched, attention-
weighted allocation produces synthesis results of supe-
rior quality when compared to the Uniform Allocation, as
seen in Figs. 14 (d) and (b). Whereas for views receiving
less attention, attention-weighted allocation is inferior to
Uniform Allocation, as seen in Figs. 14 (c) and (a).

Following, we compare system performance, under
varying viewer distribution concentrations, against 3D-
AVC [12]. 3D-AVC jointly codes multiview texture and
depth streams, exploring depth-based coding tools, to
achieve reported bit-rate savings of up to 35% over
MVC [38]. In applications with large numbers of cam-
eras, however, deployment of 3D-AVC will require a
single coder capable of centralizing the multiple camera
streams. Furthermore, due to inter-view dependencies,
all streams must be made available at decoding, regard-
less of viewer attention. We use the 3DV-ATM Reference
Software v14.0 [39]. For each row of our Akko & Kayo set
up, we apply 3D-AVC across the 3 cameras of texture
and depth, as recommended in [40]. Results are depicted
in Fig. 15. 3D-AVC presents average bit-rate savings of
45% with respect to our proposed rate allocation using
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TABLE III
Average bit-rate savings of Texture Model and Texture plus Depth

Model relative to Uniform Allocation, using compressed depth maps,
for various viewer distributions.

Distribution Texture Model Texture + Depth
Bimodal 4.9 % 24.7 %
Laplacian 19.2 % 28.7 %
2D Gaussian 7.9 % 10.5 %

(a) (b)

(c) (d)

Fig. 14. Visual comparison of detail crops for Pantomime under
Laplacian attention distribution (see Fig. 6). Synthesis results for (a)
view 27 and (b) view 37 from a Uniform Allocation and (c) view 27
and (d) view 37 from attention-weighted compression with Texture plus
Depth Model. Overall bit-rate is 0.17 bpc.

the Texture plus Depth Model under a uniform viewer
attention distribution (labeled σ = infinity). As viewer
attention is concentrated under Gaussian distributions
with decreasing standard deviations (σ = 2.5, 1.0 and 0.5
cm, in both horizontal and vertical directions), significant
gains in total observed distortion (PSNR) and overall bit-
rate are achieved by our proposal, surpassing the 3D-
AVC performance.

VI. Conclusions

We proposed an attention-weighted rate-allocation
technique for texture images and depth maps to min-
imize the total observed distortion within a FTV broad-
cast system. We model the effects of both texture and
depth camera distortions upon observed view distortion
as well as their relative impact. A joint optimization
framework is presented for attention-weighted rate al-
location among both texture and depth cameras. Re-
sults show significant gains of attention-weighted rate
allocation of texture relative to uniform allocation. The
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Fig. 15. Overall R-D performance comparison between Texture plus
Depth Model for Akko & Kayo under Gaussian viewer distributions with
varying standard deviations, uniform viewer distribution (σ = infinity)
and 3D-AVC [12].

joint optimized allocation of texture and depth was
shown to outperform both the uniform and the texture-
only rate allocation. For concentrated viewer attention
distributions, our proposal can also outperform 3D-AVC
coding of the multiple texture and depth streams.

Future work may focus on many other aspects of FTV,
such as attention-weighted networking and transcoding
among sub-networks. For applications with large num-
bers of cameras, 3D-AVC or other multiview coding ex-
tensions may be incorporated and applied across camera
sub-sets, each of which attention-weighted in response
to viewer demands. Another aspect of further study is
system adaptation to dynamic scenarios with changing
scene contents. Methods for preventing, or attenuating,
possible image quality reduction experienced by viewers
as camera rate allocation varies asymmetrically over time
may be investigated. Of particular interest are the esti-
mation and update policies for the texture-to-depth ratio,
through the efficient monitoring of distortion surfaces,
such as Fig.4(a), in response to changes in scene contents.
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