Handbook of Visual Communications

Edited by

Hseuh-Ming Hang
Department of Electronics Engineering and Microelectronics and Information Systems Research Center
National Chiao Tung University
Hsinchu, Taiwan, ROC

John W. Woods
ECSE Department
Rensselaer Polytechnic Institute
Troy, New York

Academic Press
San Diego New York Boston London Sydney Tokyo Toronto
Series in Telecommunications

Handbook of Visual Communications
Edited by
Hsenuh-Ming Hang
Department of Electronics Engineering and Microwaves
and Information Systems Research Center
National Chiao Tung University
Hsinchu, Taiwan, ROC

John W. Woods
ECSE Department
Rensselaer Polytechnic Institute
Troy, New York

Other Books in the Series

6.2 Vector Quantization with Memory 197
6.3 Adaptive Vector Quantization 202
6.4 Vector Quantization in Transform and Subband Coding 205
6.5 Vector Quantization in Interframe Video Coding 208
6.6 Variable Bit-Rate Vector Quantization 210
6.7 Enhanced Decoding 215
6.8 Concluding Remarks 219
References 220

7 TRANSFORM CODING
R. L. de Queiroz
K. R. Rao
7.1 Introduction 223
7.2 Transforming the Signal 226
7.3 Performance of Transforms 231
7.4 Representation of a Transformed Image 233
7.5 Quantizers and Entropy Coding 236
7.6 Quantizer Selection 238
7.7 Human Visual Sensitivity Weighting 239
7.8 Transform Coders: Zonal Sampling 240
7.9 Joint Pictures Experts Group Baseline System 242
7.10 Interframe Image Coding 246
7.11 Vector Quantization 250
7.12 Conclusions 257
Appendix 7 A: Discrete Cosine Transform 258
Appendix 7 B: Lapped Orthogonal Transform 259
References 261

8 SUBBAND AND WAVELET FILTERS FOR HIGH-DEFINITION VIDEO COMPRESSION
T. Naveen
J. W. Woods
8.1 Introduction 266
8.2 Review of Subband Filter Sets 269
8.3 Power Spectral Densities 274
8.4 Noise in a Subband Synthesis System 287
Chapter 7

Transform Coding

R. L. de Queiroz and K. R. Rao
Electrical Engineering Department
University of Texas at Arlington
Arlington, Texas

This chapter presents the role of discrete transforms, especially discrete cosine transform (DCT) and lapped orthogonal transform (LOT), in image coding. The application of these transforms both in still frame and image sequence coding is illustrated. Other functions such as quantization, motion estimation, human visual sensitivity, and variable length coding that are inherent to the overall coding scheme are also described.

7.1 Introduction

While various discrete transforms [1–8] such as Walsh–Hadamard, Haar, slant, discrete Fourier (DFT), DCT, discrete sine (DST), LOT, and discrete wavelet transform (DWT) have been investigated for application to image coding, only DCT has emerged as the most practical and efficient transform. The LOT [5, 6] and DWT (see [7, 8] and Chapter 8 in this book) have been extensively simulated in still frame and image sequence coding and have proven to be formidable competitors to the DCT. It is to be cautioned that transform by itself is only a part of the overall compression scheme, as the coding process may involve