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Abstract—In the reversible corversion of color imagesto gray
ones, colors are mapped to textures and from the textures the
recevver can recover the colors, i.e. one may print a color image
with a black and white printer and, at a later time, recover
colors. Such a method was originally devised using the wavelet
transform and replacinghigh-fr equencysubbandsby subsampled
chrominance planes. Here, we proposeto improve the original
method thorugh the useof a largely redundant representationof
the chrominance, with multiple embedding into subbands of a
general subband transform. Our resultspoint to minimization of
the variance of the error causedby noisewhen the chrominance
is replicated into many subbands and not linearly combined.
Derived noise bounds guide us on how many subbands to
embed the chrominance. Experimental results were carried for
multiple noise levels, models, transform sizes,and number of
embeddingsubbands, demonstrating the theoretical analysisand
the method's potential.

|. INTRODUCTION

Recently an innovative methodto corvert color images
into gray oneswas introduced[1]. Its key featurewasto be
reversible. The color imageis corvertedto gray scalesand
one can retrieve the colors from the gray image at a later
time. A userwith anelectroniccolor documentmay only have
easyaccesso monochromeof ce laser printers,or to a fax
machine.Thus, the color documentis rst corvertedto gray
scales,then to black and white, before printing (or faxing).
Later on, the user might scan(receve) the black and white
documentrecover the monochromggray) image, processit,
andretrieve the colors. The processs illustratedin Fig. 1.

We map colors to high frequeng textures. By analysing
the textures, the user retrieves the colors for each region.
In the originally proposedmethod[1] one hasto: (i) Con-
vert the color image to some luminance-chrominanceolor
spacesuchas YCbCr or CIELab [2]. (i) Apply the discrete
wavelet transform (DWT) to the luminancechannel[3],[4].
(i) Spatiallyreduce(subsample)he 2 chrominancelanesby
afactorof 2 in eachdirection.(iv) Replacehe high-frequeng
wavelet subbands[4](HL and LH) by the 2 chrominance
planes.(v) Apply the inverseDWT yielding a texturized gray
image (becauseof the embeddedchrominanceplanesacting
assubbandcoefcients). (vi) Scale,halftone[5] and print (or
transmit)the texturized gray image. The methodis illustrated
in Fig. 2.

In orderto recoverthe color from the graytexturizedimage,
asillustratedin Fig. 3, onehasto: (i) Scan(receve)theimage
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Fig. 1.

lllustration of the color to gray conversionapplication.

and corvert it to gray scale.(ii) Apply the DWT to the gray

image. (iii)Retrieve the high frequeng subbandsand assign
them as chrominanceplanes.(iv) Setto zero the subbands
which wereusedto embedchrominance(v) Apply aninverse
DWT to theresultingsubbandsyielding the luminanceplane.

(vi) Spatiallyincrease(up-sample}he 2 chrominanceplanes
by afactorof 2 in eachdirection.(vii) Corvertthe luminance-
chrominanceplanesbackinto RGB.

In essencecolors are corvertedto strong high-frequeng
patternsFor the normaluserthey look lik e halftonesor similar
textureswhich blendwith the objects.Examplesareshavn in
Fig. 4. The method works so well becausethe embedding
is natural, since the colors match the objects.If we coded
the chrominanceand embeddedhe binary information into
the image using ary typical image watermarkingtechnique
[6], it would probably not work. The encodedinformation
doesnot correlatewith the imagecontents.In orderto avoid
artifactsone would have to make it subtleor invisible. Then,
it is likely that the information would be removed by the
halftoning, printing and scanningprocesseslf we make the
embeddednformation strongenoughto survive halftoning it
would likely causeartifacts.At the moment,despitethe work
in this direction[7]-[15], we do not have reliablenon-intrusie
watermarkingmethodsfor printedimages without controlling
printer characteristicssuch as the halftone algorithm or the
laser beamintensity The proposedmethod producesstrong
but pleasanpatternsmakingit an excellentcandidatefor the
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Fig. 2. Thecolorto gray cornversionmethod.The luminanceis decomposed
into subbandshrougha wavelet transform.The high passhandsarereplaced
by the chrominanceplanesand the imageis inversetransformedgenerating
a texturized gray imagewhich corveys the color information.

Fig. 3. Thecolorrecorery method.After scanningthe image,the texturized
image undegoesa DWT, the chrominanceplanesare extracted,the corre-
spondingsubbandsare zeroed,and an inverse DWT is carriedon the result,
yielding the luminancechannel The luminanceandchrominancehannelsare
usedto recover the colorimage.

application.

Il. EMBEDDING CHROMINANCE INTO SUBBANDS

The methodpresentedn the previous sectionis simplistic.
If the grayimagewasto be scaledup, halftonedandfaxed, it
would work very well, allowing the recovery of vivid colors.
If the imageis to be printed, the noise and errors are so
intensethat the simple method presentedwould not work.
Any minimal shift of a pixel or rotationsof one degree may
completelyimpair the color recovery [1]. As a result,in the
original work [1], somenon-linearredundang wasintroduced
in the wavelet domainto prevent sign inversionand reduce
noisesensitvity, with somesuccess.
We proposeto use a more robust redundang schemeto
copewith noise.Indeed,we proposeto:
Use generalM -bandsubbandransformg[3] ratherthan
the DWT, allowing the use of the discretecosinetrans-
form (DCT) [16] or generallappedtransformg[17],[18].
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Fig. 4. Zoomof threeexampletexturizedimagesusingthe proposednethod,
with a4 4 DCT andN = 6. The high frequeng patternstendto interfere
with sampling grids resulting in annging artifacts when displaying those
texturized imagesat lower resolution.Changingthe viewing resolutionmay
changethe artifacts. PDF corversionalso causesartifacts.

Embedthe chrominanceplanesinto a linear combination
of multiple subbandger chrominancechannel,asillus-
tratedin Fig. 5.

Decide upon the redundang basedon a signal to noise
modelanalysisof the embeddingmechanisms.

The questionsthat needto be answeredbefore we apply
sucha methodare:

(a) What subbandransformshouldwe use?

(b) How mary channelsM shouldit have?

(c) How mary subbanddNs shouldwe use per chromi-

nance?

(d) How do we decide upon the linear combinationof

the subbandj.e. how do we distribute the chrominance
information onto the Ns channels?

As for the transform (a) we can use lapped transforms
suchasthelappedorthogonatransform(LOT), the modulated
(extended) lapped transform (MLT or ELT) [17], or even
the DCT [16]. All theseM -band subbandtransformswill
be similar to full-tree discretewavelet paclets, in the end.
As a note, we do want to grow the full tree,i.e. to usea
full M -bandtransform,sincewe want more subbandavhere
to embedthe chrominancesignal. Hence,for the work here,
what is importantis to have an M -band subbandtransform.
We have run teststhat indicate that the subbandtransforms,
here proposedoutperformthe previous methodin [1] which
is basedon the DWT. Test resultsalso shav that the DCT
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Fig. 5. lllustration of the proposedmethod,shaving an example of the

subbandsof a 4x4 transform,indicating the low-passor DC band.In this

example, 3 copiesof eachchrominancechannelwere alternatelyembedded
into the highestfrequeng subbands.

slightly outperformsthe otherlappedtransformsested.These
testresultsarein thefull version[19] of this paperalongwith

mary theoreticalresults.The choiceon the numberof bands
(questionb), we believe to be a function of Ns. We do not

want to usetoo mary subbanddo carry chrominancenfor-

mation, becausdat may impair the quality of the luminance
information.For example,onecanusea4 4-band(M = 16)

transformto embedup to 6 bands(Ns = 3), no more than
10, and higher numbersmay be accommodatedhto an 8 8

transform.Note thatthe larger M is, the betterthe luminance
quality, but the worstthe chrominanceepresentatiosincethe
chrominancelanesmustbe sub-sampledccordinglyto t the
subbandsHence,we want M to be as small as possibleas
long asM is substantiallylargerthanNs. A detailedanalysis
on decidingupon Ns will be carriedlater on and questions
(c,d) will be answeredn the following sections.

The chrominancechannelscan be expressedas the linear
combinationof the information into a plurality of subbands.
However, ratherthan linearly combiningthe informationinto
mary subbanddt is betterto replicateeachchrominanceplane
ontomary subbandgno combining),i.e. simply replicateeach
of the chrominanceplanesinto asmary subbandssdesired,
without botheringto do ary linearcombinationbetweerthem.
Thesupportfor this assertiorcomesrom a Theorenthatdeals
with multiple descriptiormethodswhoseproof involvessome
algebraandis left to a Journalversionof this paper

Let N = 2Ng (equal numberof embeddedsubbandsor
eachof the chrominances)The more subbandswe use,the
better the chrominancereproduction,but when we use one
subbandto embeda chrominanceplane or its replica, we
actuallyerasetheluminancein thatsubbandSo, asthedistor
tion decreasebecauseave improve chrominanceeproduction,
at the sametime distortion also increasedecausduminance
reproductiorsuffers. Without loss of generality let us number
the M subbandsne-dimensionallyarrangingthem suchthat
the embeddeduminancesubbandsvould be thelastN . More
speci cally, if we have already N subbandembedded,is
it worthy to embedtwo more, one for each chrominance
channel?Assumefor the momentthat the printing-scanning
processcausesan image distortion that is stationary white

and hasvariance(enegy) 2. We can shav (in the Journal
versionof this paper)that it is only advantageouso embed
chrominancento two more subbandsn termsof SNR if

N(N + 2)
2 2 2
ﬂ> 8SM SMN1+ SM N 2 (1)
where 2~ and 2 arethe variancesof the next

two luminancesubbandghatwill bereplacedby thosefurther
two chrominanceeplicae.The above conditiontells us thatiif
the texturedimagesuffers smallnoiselevels, it is not advanta-
geougo addchrominanceedundang in expenseof luminance
quality. In the extremecaseof noisefreetransmissionpnecan
perfectly recoser both chrominancechannelswith only two
subbandsNo redundang is necessaryAs the noiseincreases,
the chrominancanformation disappearss noisecorruptsthe
textures,andit becomesecessaryo add redundang (more
subbands}o protectthe channel.This equationalso tells us
that, as N grows, it becomesharderand harderto get ary
bene t from embeddingaven more subbandsOf course,it all
depend=n the varianceof the luminancesubbandghat will
be discarded The more intensetheir enegy, the moreintense
the noisehasto be to make it worthy embedmore subbands.

I1l. EXPERIMENTS

The condition in (1) is image dependentand hard to
compute. Furthermoresincewe do not have reliable methods
to measurethe noise, it is not trivial to determine 2. We
have assumedhe print-scandistortion to be additive white
Gaussiannoise. It is a reasonablemodel, supportedby a
numberof reasonsFirstly, geometricdistortions, causedby
paperwarpingandmisplacementhalftoningandothersources
contribtute to the overall image distortion. However, as we
apply correctionsto thesedistortions, lter the halftone,and
so on, the resultingnoiseis not that correlatedto the image
ary longer Secondly the quality of reconstructioris heavily
dependenbn theimplementatiorof the geometriccorrections,
e.g.theinterpolationin the af ne transformcorrectionmech-
anism.Differentimplementationsvould have large impacton
the nal result, neverthelesshey are unrelatedto this work.
Furthemorea study on modellingthe print-scannoisewill be
presentecelsavhere. At last, it is not practicalto perform a
large batchof teststo determineparametersf we hadto print
and scanthe imagesevery time. Hence,we will model the
noiseasadditive. We canalsoimprove themodelincorporating
halftones:

Scale(interpolate)the gray imageup by a factorof K in
eachdirection.

Halftone the resultingimage using error diffusion [5].
Filter the bi-level image using a short Gaussianlter to
softenthe dots borders.

Add zero-mearwhite noisewith variance g
Downsampleby averagingK K -pixel blocks of the
noisy, Itered, halftonedimage.

In this way, noise also comesfrom the halftoning, which is
reversedby simple averaging.If K = 1 thereis no inverse
halftoningprocessin oderto accountfor geometriadistortions
such as rotation and shearingcausedby printing, and other
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Fig. 6. Zigzagorderingof subbands.

physicaleffects of putting ink on paper we include additive
noise to the halftonedimage. We rst Itered it to further
distort the bitmap. This contrastswith the work in [1] which
usedno noisemodel.

In orderto verify our modelwe carried experimentsfor a
few colorimages.Subbandrderingfollowing the zigzagpath
as shown in Fig. 6 was used.The subsamplecchrominance
planesare alternatelyembeddednto the last high frequeny
subbandsccordingto the zigzagpath,asshown in Fig. 6. We
usedtwo transforms:ithe4 4 DCT (M = 16) andthe 8 8
DCT (M = 64). Lappedtransformsand other valuesof M
could be usedaswell, but thesetwo transformsare suf cient
for this papers analyticalpurposes.

In a rst setof tests,the RGB image was corvertedinto
a gray-scalesmage,embeddinghe chrominancento the last
N out of M subbandsZero-meanwhite noisewith variance

2 wasaddedto the gray image,interferingwith the textures.
The color imageis, then, retrieved,andwe computethe mean
squarederror betweenthe two RGB images.The resultsfor
two differentimages,andvariousvaluesof N, M and 2 are
presentedn Tablel.

From the resultswe can seea clear patternthat con rms
our theoreticalresults.For lower noisevalues,aswe increase
N, the MSE increasesWheneer the noiseis moreintenseas
we increaseN , the MSE actually decreasesiWe can seethat
for image“wine” the noisevarianceboundin (1) lies between
16 and 32 for all valuesof N tested,for M = 16. The same
boundssene for M = 64andN 6. For N > 6, 2 seems
to be above 32 and under64. Image“Lena” haslessdetails
andnotasmary extremecolorsasimage“wine” and,for that,
the noiseboundsare much lower becausehe high-frequeng
subbandrariancesaresmaller ForM = 16 andimage“Lena”,
the boundof 2 = 6 seemsto apply to all valuesof N
tested.A similar value appliesto the M = 64 case.For a
rangeof noise valuesthe relation betweenN and the MSE
is not monotonicbut around 2 = 10 the behaiiour becomes
monotoniconceagain.In theseexperimentswe modeledthe
noise as uncorrelatedand additive. In reality thereis much
moreto it, but the modelis a beginning.

The noiselevels, however, were not overestimatedin order
to improve noise estimationand simulate the printing and
scanningprocesswe appliedthe following steps:Testswith
the print simulation (adding noise with variance g to the
halftone)were carriedandresultsfor image“wine” and4 4
DCT arepresentedn Tablell.
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TABLE |
M SE RESULTS (IN RGB SPACE) FOR EMBEDDING CHROMINANCE INTO
MULTIPLE SUBBANDS OF THE DCT FOR VARIOUS NOISE LEVELS n AND
NUMBER OF BANDSN .

4 4 DCT - Image“wine”
N i
0 4 8 16 32 64
2 76.8 | 100.7 | 172.0 | 437.1 | 1387.4 | 4350.4
4 101.8 | 124.1 | 185.8 | 440.5 | 1333.6 | 4128.9
6 140.5 | 160.5| 220.5 | 447.3 | 1287.8 | 3886.0
10 | 259.3 | 276.1 | 326.6 | 514.2 | 1203.6 | 3489.2
8 8 DCT - Image“wine”
N 2
0 4 8 16 32 64
2 118.8 | 143.1 | 212.5| 495.4 | 1497.9 | 4519.7
4 121.7 | 144.6 | 218.7 | 487.0 | 1460.6 | 4442.5
6 125.4 | 148.8 | 219.5 | 481.6 | 1507.4 | 4424.3
10 | 135.2 | 157.2 | 226.9 | 484.7 | 1455.6 | 4385.9
16 | 154.4 | 175.1 | 238.3 | 489.6 | 1381.0 | 4264.9
4 4 DCT - Image“Lena”
N 2
0 4 8 16 32 64
2 226 | 50.3 | 132.6 | 449.7 | 1599.4 | 4793.9
4 244 | 50.1 | 126.6 | 424.5 | 1480.1 | 4526.4
6 26.3 | 50.0 | 119.7 | 395.6 | 1387.7 | 4236.2
10 | 35.2 | 55.1 | 113.5| 342.2 | 1189.9 | 3730.3
8 8 DCT - Image“Lena”
N i
0 4 8 16 32 64
2 38.2 | 65.8 | 1535 | 487.4| 1673.6 | 4935.1
4 38.4 | 66.5 | 155.1 | 476.5| 1676.4 | 4901.5
6 38.6 | 66.9 | 147.7 | 467.3 | 1617.3 | 4933.2
10| 39.1 | 66.6 | 146.6 | 458.7 | 1601.9 | 47345
16 | 39.9 | 65.5 | 139.7 | 433.8 | 1481.8 | 4459.5

The halftoning processcausesso much degradationthat all
noisevalues g yield decayingMSE for increasingN . Figure
7 shavs a zoom of part of the image that would be seen
by a scanneri.e. right after scaling by K, error diffusion
halftoning, Gaussiarblurring andwhite noisecorruption.The
imageis nearlybinary andvery noisy. It is interestingthatthis
imagestill carriescolor information. The noiseis so intense
that the more subbandswe useto protectthe chrominance
the better Of coursethereis a limit that is not shavn in
the tables.If we extend the resultsin Table Il for the case
K = 4and , = 0, we would obtain the MSE resultsshavn
in Fig. 8. NotethatasN increasedoo much, we run out of
low-enegy subbandsvhereto embedthe chrominanceopies.
In fact, at somepoint, the subbandvariancesin (1) become
too high, andthatcompoundwith thefactthatthetermgrows
with N2, limiting the effectivenessof further embedding.
The minimum is reachedat N = 10, which corresponds
to the last four diagonalline of subbandsOf course,there
will be some blocking artifacts in the luminance channel,
but that, apparentlyis compensatedby the improvementsin
chrominanceecovery.

The resultsand their associatedliscussionjn this section,
sene to point to the effectivenessof the method of linear
redundanciesn the subbanddomain. In typical scenarios,
embeddingchrominancento more subbandsnayimprove the
reconstructedmage quality. As an example, the recovered
colorimagefor N = 10ina4 4DCT, K =4, 2= 25is
shavnin Fig. 9. Thecolorsarereasonablyivid, but thereader



SIBGRAPI 2007

TABLE I
M SE RESULTS (IN RGB SPACE) FOR EMBEDDING CHROMINANCE INTO
MULTIPLE SUBBANDS, AFTER SCALING, HALFTONING AND SIMULATED
PRINTING.

4 4 DCT - Image“wine”
2

p
0 [ 10 | 25 [ 50

1730.9
1607.9
1402.5

1928.7
1805.3
1578.8

2547.9
2352.4
2152.2

o BN

1194.5
1132.4
1016.3

1251.7
1186.9
1069.4

1424.6
1351.3
1209.1

o BN

1132.5
1081.5
975.4

1156.7
1105.7
998.5

1243.7
1183.6
1070.9

o BN

Fig. 7. Zoomedportionof thegray (nearbinary)imagethatwould be seenby
a scannerafter scalingby K = 4, halftoning using error diffusion, blurring

with a Gaussianlter andwhite noise corruptionwith g = 25.

shouldtake into consideratiorthattheimageis a startingpoint
thatcanbefurthercorrectedusingphotoeditingsoftwaretools.
Furthermorejt hasto be putin the right perspectie the fact
that we start with a black and white noisy halftone image
shawvn in Fig. 7 (enlaiged portion) to get to the color image.
With thatin mind the resultscanbe consideredvery good.

IV. CONCLUSIONS

In this paper we proposeda methodfor reversible con-
versionfrom color imagesto gray onesbasedon redundant
color information embeddedinto subbandsof an M -band
subbandtransform. Among the contrikutions, we propose
to use a general subbandtransform rather than wavelets,
sinceit generatesnore subbandsand the insertion of color
information with strong linear redundang. We have shavn
that the ideal distribution of the chrominanceenegy among
mary subbandss to replicatethe chrominanceplanefor each
subband.We also have calculatedthe SNR performanceof
the method and the boundsthat limit the effectivenessof
chrominanceembeddingaswell astheamountof redundang.

Fig. 8. MSE plot for N = 10in a4 4 DCT embeddingframework.
Printing simulationusederror diffusion, K = 4 andno additve noise.

Fig. 9. Therecoreredcolorimagefor N = 10in a4 4 DCT framevork
is shavn at the top. Printing simulation includeserror diffusion, Gaussian
Itering, scalingby K = 4, and noisewith variance g = 25.

Redundansubbandembeddingof chrominanceplanesdis-
torts luminance but improves the robustnessof the color
information. The boundstell us that if the noise level is
high enoughone should sparemore luminancesubbandso
protectthe chrominancechannel.The printing-scanningpath
is simulatedandour resultsshov thatthe noiseis high enough
to warrantthe embeddingpf colorinto mary subbandsin fact,
the resultsshawv that our methodis effective.
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