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Abstract— In the reversible conversion of color imagesto gray
ones, colors are mapped to textures and fr om the textures the
receiver can recover the colors, i.e. one may print a color image
with a black and white printer and, at a later time, recover
colors. Such a method was originally devised using the wavelet
transform and replacinghigh-fr equencysubbandsby subsampled
chrominance planes. Here, we proposeto impr ove the original
method thorugh the useof a largely redundant representationof
the chrominance, with multiple embedding into subbands of a
general subband transform. Our resultspoint to minimization of
the variance of the error causedby noisewhen the chrominance
is replicated into many subbands and not linearly combined.
Derived noise bounds guide us on how many subbands to
embed the chrominance. Experimental results were carried for
multiple noise levels, models, transform sizes, and number of
embeddingsubbands,demonstrating the theoretical analysisand
the method's potential.

I . INTRODUCTION

Recently, an innovative method to convert color images
into gray oneswas introduced[1]. Its key featurewas to be
reversible.The color image is converted to gray scalesand
one can retrieve the colors from the gray image at a later
time.A userwith anelectroniccolor documentmayonly have
easyaccessto monochromeof�ce laserprinters,or to a fax
machine.Thus, the color documentis �rst convertedto gray
scales,then to black and white, before printing (or faxing).
Later on, the user might scan(receive) the black and white
document,recover the monochrome(gray) image,processit,
andretrieve the colors.The processis illustratedin Fig. 1.

We map colors to high frequency textures. By analysing
the textures, the user retrieves the colors for each region.
In the originally proposedmethod [1] one has to: (i) Con-
vert the color image to some luminance-chrominancecolor
spacesuchas YCbCr or CIELab [2]. (ii) Apply the discrete
wavelet transform(DWT) to the luminancechannel[3],[4].
(iii) Spatiallyreduce(subsample)the2 chrominanceplanesby
a factorof 2 in eachdirection.(iv) Replacethehigh-frequency
wavelet subbands[4](HL and LH) by the 2 chrominance
planes.(v) Apply the inverseDWT yielding a texturizedgray
image (becauseof the embeddedchrominanceplanesacting
assubbandcoef�cients). (vi) Scale,halftone[5] andprint (or
transmit)the texturizedgray image.The methodis illustrated
in Fig. 2.

In orderto recover thecolor from thegraytexturizedimage,
asillustratedin Fig. 3, onehasto: (i) Scan(receive) theimage
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Fig. 1. Illustration of the color to gray conversionapplication.

and convert it to gray scale.(ii) Apply the DWT to the gray
image. (iii)Retrieve the high frequency subbandsand assign
them as chrominanceplanes.(iv) Set to zero the subbands
which wereusedto embedchrominance.(v) Apply an inverse
DWT to theresultingsubbands,yielding the luminanceplane.
(vi) Spatially increase(up-sample)the 2 chrominanceplanes
by a factorof 2 in eachdirection.(vii) Convert theluminance-
chrominanceplanesback into RGB.

In essence,colors are converted to strong high-frequency
patterns.For thenormaluserthey look likehalftonesor similar
textureswhich blendwith theobjects.Examplesareshown in
Fig. 4. The method works so well becausethe embedding
is natural, since the colors match the objects. If we coded
the chrominanceand embeddedthe binary information into
the image using any typical image watermarkingtechnique
[6], it would probably not work. The encodedinformation
doesnot correlatewith the imagecontents.In order to avoid
artifactsonewould have to make it subtleor invisible. Then,
it is likely that the information would be removed by the
halftoning, printing and scanningprocesses.If we make the
embeddedinformationstrongenoughto survive halftoning it
would likely causeartifacts.At the moment,despitethe work
in this direction[7]–[15], wedonothavereliablenon-intrusive
watermarkingmethodsfor printedimages,without controlling
printer characteristicssuch as the halftone algorithm or the
laser beamintensity. The proposedmethodproducesstrong
but pleasantpatterns,makingit an excellentcandidatefor the
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Fig. 2. The color to grayconversionmethod.The luminanceis decomposed
into subbandsthrougha wavelet transform.The high passbandsarereplaced
by the chrominanceplanesand the imageis inversetransformedgenerating
a texturizedgray imagewhich conveys the color information.
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Fig. 3. The color recovery method.After scanningthe image,the texturized
image undergoesa DWT, the chrominanceplanesare extracted,the corre-
spondingsubbandsarezeroed,andan inverseDWT is carriedon the result,
yielding theluminancechannel.Theluminanceandchrominancechannelsare
usedto recover the color image.

application.

I I . EMBEDDING CHROMINANCE INTO SUBBANDS

The methodpresentedin the previous sectionis simplistic.
If the gray imagewasto be scaledup, halftonedandfaxed, it
would work very well, allowing the recovery of vivid colors.
If the image is to be printed, the noise and errors are so
intensethat the simple method presentedwould not work.
Any minimal shift of a pixel or rotationsof one degreemay
completelyimpair the color recovery [1]. As a result, in the
original work [1], somenon-linearredundancy wasintroduced
in the wavelet domain to prevent sign inversion and reduce
noisesensitivity, with somesuccess.

We proposeto use a more robust redundancy schemeto
copewith noise.Indeed,we proposeto:

� UsegeneralM -bandsubbandtransforms[3] ratherthan
the DWT, allowing the useof the discretecosinetrans-
form (DCT) [16] or generallappedtransforms[17],[18].

Fig. 4. Zoomof threeexampletexturizedimagesusingtheproposedmethod,
with a 4� 4 DCT and N = 6. The high frequency patternstend to interfere
with sampling grids resulting in annoying artifacts when displaying those
texturized imagesat lower resolution.Changingthe viewing resolutionmay
changethe artifacts.PDF conversionalsocausesartifacts..

� Embedthechrominanceplanesinto a linear combination
of multiple subbandsper chrominancechannel,as illus-
tratedin Fig. 5.

� Decideupon the redundancy basedon a signal to noise
modelanalysisof the embeddingmechanisms.

The questionsthat needto be answeredbefore we apply
sucha methodare:

� (a) What subbandtransformshouldwe use?
� (b) How many channelsM shouldit have?
� (c) How many subbandsNs shouldwe useper chromi-

nance?
� (d) How do we decideupon the linear combinationof

the subband,i.e. how do we distribute the chrominance
informationonto the Ns channels?

As for the transform (a) we can use lapped transforms
suchasthelappedorthogonaltransform(LOT), themodulated
(extended) lapped transform (MLT or ELT) [17], or even
the DCT [16]. All theseM -band subbandtransformswill
be similar to full-tree discretewavelet packets, in the end.
As a note, we do want to grow the full tree, i.e. to use a
full M -bandtransform,sincewe want more subbandswhere
to embedthe chrominancesignal. Hence,for the work here,
what is important is to have an M -bandsubbandtransform.
We have run teststhat indicate that the subbandtransforms,
hereproposed,outperformthe previous methodin [1] which
is basedon the DWT. Test resultsalso show that the DCT
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Fig. 5. Illustration of the proposedmethod,showing an example of the
subbandsof a 4x4 transform,indicating the low-passor DC band. In this
example,3 copiesof eachchrominancechannelwere alternatelyembedded
into the highestfrequency subbands.

slightly outperformstheotherlappedtransformstested.These
testresultsarein thefull version[19] of this paperalongwith
many theoreticalresults.The choiceon the numberof bands
(questionb), we believe to be a function of N s. We do not
want to use too many subbandsto carry chrominanceinfor-
mation, becauseit may impair the quality of the luminance
information.For example,onecanusea 4� 4-band(M = 16)
transformto embedup to 6 bands(Ns = 3), no more than
10, and higher numbersmay be accommodatedinto an 8� 8
transform.Note that the larger M is, the betterthe luminance
quality, but theworst thechrominancerepresentationsincethe
chrominanceplanesmustbesub-sampledaccordinglyto �t the
subbands.Hence,we want M to be as small as possibleas
long asM is substantiallylarger thanNs. A detailedanalysis
on deciding upon Ns will be carried later on and questions
(c,d) will be answeredin the following sections.

The chrominancechannelscan be expressedas the linear
combinationof the information into a plurality of subbands.
However, ratherthan linearly combiningthe information into
many subbandsit is betterto replicateeachchrominanceplane
ontomany subbands(no combining),i.e. simply replicateeach
of the chrominanceplanesinto asmany subbandsasdesired,
without botheringto do any linearcombinationbetweenthem.
Thesupportfor thisassertioncomesfrom aTheoremthatdeals
with multiple descriptionmethods,whoseproof involvessome
algebraand is left to a Journalversionof this paper.

Let N = 2Ns (equal numberof embeddedsubbandsfor
eachof the chrominances).The more subbandswe use, the
better the chrominancereproduction,but when we use one
subbandto embeda chrominanceplane or its replica, we
actuallyerasetheluminancein thatsubband.So,asthedistor-
tion decreasesbecausewe improvechrominancereproduction,
at the sametime distortion also increasesbecauseluminance
reproductionsuffers.Without lossof generality, let usnumber
the M subbandsone-dimensionally, arrangingthemsuchthat
theembeddedluminancesubbandswould be the lastN . More
speci�cally, if we have already N subbandembedded,is
it worthy to embed two more, one for each chrominance
channel?Assumefor the momentthat the printing-scanning
processcausesan image distortion that is stationary, white

and has variance(energy) � 2
n . We can show (in the Journal

versionof this paper)that it is only advantageousto embed
chrominanceinto two moresubbandsin termsof SNR if

� 2
n >

N (N + 2)
8M

�
� 2

sM � N � 1
+ � 2

sM � N � 2

�
: (1)

where � 2
sM � N � 1

and � 2
sM � N � 2

are the variancesof the next
two luminancesubbandsthatwill be replacedby thosefurther
two chrominancereplicae.Theabove conditiontells us that if
thetexturedimagesufferssmallnoiselevels,it is not advanta-
geousto addchrominanceredundancy in expenseof luminance
quality. In theextremecaseof noisefreetransmission,onecan
perfectly recover both chrominancechannelswith only two
subbands.No redundancy is necessary. As thenoiseincreases,
the chrominanceinformationdisappearsasnoisecorruptsthe
textures,and it becomesnecessaryto add redundancy (more
subbands)to protect the channel.This equationalso tells us
that, as N grows, it becomesharderand harder to get any
bene�t from embeddingevenmoresubbands.Of course,it all
dependson the varianceof the luminancesubbandsthat will
be discarded.The moreintensetheir energy, the moreintense
the noisehasto be to make it worthy embedmoresubbands.

I I I . EXPERIMENTS

The condition in (1) is image dependentand hard to
compute.Furthermore,sincewe do not have reliablemethods
to measurethe noise, it is not trivial to determine� 2

n . We
have assumedthe print-scandistortion to be additive white
Gaussiannoise. It is a reasonablemodel, supportedby a
numberof reasons.Firstly, geometricdistortions,causedby
paperwarpingandmisplacement,halftoningandothersources
contribute to the overall image distortion. However, as we
apply correctionsto thesedistortions,�lter the halftone,and
so on, the resultingnoise is not that correlatedto the image
any longer. Secondly, the quality of reconstructionis heavily
dependenton theimplementationof thegeometriccorrections,
e.g. the interpolationin the af�ne transformcorrectionmech-
anism.Differentimplementationswould have large impacton
the �nal result, neverthelessthey are unrelatedto this work.
Furthemore,a studyon modellingtheprint-scannoisewill be
presentedelsewhere.At last, it is not practical to perform a
largebatchof teststo determineparametersif we hadto print
and scanthe imagesevery time. Hence,we will model the
noiseasadditive.Wecanalsoimprovethemodelincorporating
halftones:

� Scale(interpolate)thegray imageup by a factorof K in
eachdirection.

� Halftonethe resultingimageusingerror diffusion [5].
� Filter the bi-level imageusing a short Gaussian�lter to

softenthe dotsborders.
� Add zero-meanwhite noisewith variance� 2

p .
� Downsampleby averagingK � K -pixel blocks of the

noisy, �ltered, halftonedimage.
In this way, noisealso comesfrom the halftoning, which is
reversedby simple averaging.If K = 1 there is no inverse
halftoningprocess.In oderto accountfor geometricdistortions
such as rotation and shearingcausedby printing, and other
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Fig. 6. Zigzagorderingof subbands.

physicaleffects of putting ink on paper, we include additive
noise to the halftoned image. We �rst �ltered it to further
distort the bitmap.This contrastswith the work in [1] which
usedno noisemodel.

In order to verify our model we carriedexperimentsfor a
few color images.Subbandorderingfollowing thezigzagpath
as shown in Fig. 6 was used.The subsampledchrominance
planesare alternatelyembeddedinto the last high frequency
subbandsaccordingto thezigzagpath,asshown in Fig. 6. We
usedtwo transforms:the 4� 4 DCT (M = 16) and the 8� 8
DCT (M = 64). Lappedtransformsand other valuesof M
could be usedaswell, but thesetwo transformsaresuf�cient
for this paper's analyticalpurposes.

In a �rst set of tests,the RGB image was converted into
a gray-scalesimage,embeddingthe chrominanceinto the last
N out of M subbands.Zero-meanwhite noisewith variance
� 2

n wasaddedto thegray image,interferingwith the textures.
Thecolor imageis, then,retrieved,andwe computethemean
squarederror betweenthe two RGB images.The resultsfor
two differentimages,andvariousvaluesof N , M and� 2

n are
presentedin Table I.

From the resultswe can seea clear patternthat con�rms
our theoreticalresults.For lower noisevalues,aswe increase
N , theMSE increases.Whenever thenoiseis moreintense,as
we increaseN , the MSE actuallydecreases.We canseethat
for image“wine” thenoisevarianceboundin (1) lies between
16 and32 for all valuesof N tested,for M = 16. The same
boundsserve for M = 64 andN � 6. For N > 6, � 2

n seems
to be above 32 and under64. Image“Lena” haslessdetails
andnot asmany extremecolorsasimage“wine” and,for that,
the noiseboundsaremuch lower becausethe high-frequency
subbandvariancesaresmaller. For M = 16andimage“Lena”,
the bound of � 2

n = 6 seemsto apply to all values of N
tested.A similar value applies to the M = 64 case.For a
rangeof noise valuesthe relation betweenN and the MSE
is not monotonicbut around� 2

n = 10 the behaviour becomes
monotoniconceagain.In theseexperiments,we modeledthe
noise as uncorrelatedand additive. In reality there is much
more to it, but the model is a beginning.

Thenoiselevels,however, werenot overestimated.In order
to improve noise estimationand simulate the printing and
scanningprocess,we appliedthe following steps:Testswith
the print simulation (adding noise with variance� 2

p to the
halftone)werecarriedandresultsfor image“wine” and4� 4
DCT arepresentedin Table II.

TABLE I

MSE RESULTS (IN RGB SPACE) FOR EMBEDDING CHROMINANCE INTO

MULTIPLE SUBBANDS OF THE DCT FOR VARIOUS NOISE LEVELS � n AND

NUMBER OF BANDS N .

4� 4 DCT - Image“wine”
N � 2

n
0 4 8 16 32 64

2 76.8 100.7 172.0 437.1 1387.4 4350.4
4 101.8 124.1 185.8 440.5 1333.6 4128.9
6 140.5 160.5 220.5 447.3 1287.8 3886.0
10 259.3 276.1 326.6 514.2 1203.6 3489.2

8� 8 DCT - Image“wine”
N � 2

n
0 4 8 16 32 64

2 118.8 143.1 212.5 495.4 1497.9 4519.7
4 121.7 144.6 218.7 487.0 1460.6 4442.5
6 125.4 148.8 219.5 481.6 1507.4 4424.3
10 135.2 157.2 226.9 484.7 1455.6 4385.9
16 154.4 175.1 238.3 489.6 1381.0 4264.9

4� 4 DCT - Image“Lena”
N � 2

n
0 4 8 16 32 64

2 22.6 50.3 132.6 449.7 1599.4 4793.9
4 24.4 50.1 126.6 424.5 1480.1 4526.4
6 26.3 50.0 119.7 395.6 1387.7 4236.2
10 35.2 55.1 113.5 342.2 1189.9 3730.3

8� 8 DCT - Image“Lena”
N � 2

n
0 4 8 16 32 64

2 38.2 65.8 153.5 487.4 1673.6 4935.1
4 38.4 66.5 155.1 476.5 1676.4 4901.5
6 38.6 66.9 147.7 467.3 1617.3 4933.2
10 39.1 66.6 146.6 458.7 1601.9 4734.5
16 39.9 65.5 139.7 433.8 1481.8 4459.5

The halftoningprocesscausesso muchdegradationthat all
noisevalues� 2

p yield decayingMSE for increasingN . Figure
7 shows a zoom of part of the image that would be seen
by a scanner, i.e. right after scaling by K , error diffusion
halftoning,Gaussianblurring andwhite noisecorruption.The
imageis nearlybinaryandvery noisy. It is interestingthatthis
imagestill carriescolor information.The noise is so intense
that the more subbandswe use to protect the chrominance
the better. Of coursethere is a limit that is not shown in
the tables.If we extend the results in Table II for the case
K = 4 and � p = 0, we would obtain the MSE resultsshown
in Fig. 8. Note that as N increasestoo much,we run out of
low-energy subbandswhereto embedthechrominancecopies.
In fact, at somepoint, the subbandvariancesin (1) become
too high,andthatcompoundswith thefactthatthetermgrows
with N 2, limiting the effectivenessof further embedding.
The minimum is reachedat N = 10, which corresponds
to the last four diagonal line of subbands.Of course,there
will be some blocking artifacts in the luminance channel,
but that, apparently, is compensatedby the improvementsin
chrominancerecovery.

The resultsand their associateddiscussion,in this section,
serve to point to the effectivenessof the method of linear
redundanciesin the subbanddomain. In typical scenarios,
embeddingchrominanceinto moresubbandsmayimprove the
reconstructedimage quality. As an example, the recovered
color imagefor N = 10 in a 4 � 4 DCT, K = 4, � 2

p = 25 is
shown in Fig. 9. Thecolorsarereasonablyvivid, but thereader
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TABLE II

MSE RESULTS (IN RGB SPACE) FOR EMBEDDING CHROMINANCE INTO

MULTIPLE SUBBANDS, AFTER SCALING, HALFTONING AND SIMULATED

PRINTING.

4� 4 DCT - Image“wine”
N � 2

p
0 10 25 50

K = 2
2 1730.9 1761.9 1928.7 2547.9
4 1607.9 1641.9 1805.3 2352.4
6 1402.5 1432.5 1578.8 2152.2

K = 4
2 1194.5 1206.2 1251.7 1424.6
4 1132.4 1139.6 1186.9 1351.3
6 1016.3 1020.2 1069.4 1209.1

K = 6
2 1132.5 1136.2 1156.7 1243.7
4 1081.5 1086.3 1105.7 1183.6
6 975.4 978.7 998.5 1070.9

Fig. 7. Zoomedportionof thegray(nearbinary)imagethatwould beseenby
a scanner, after scalingby K = 4, halftoningusingerror diffusion, blurring
with a Gaussian�lter andwhite noisecorruptionwith � 2

p = 25.

shouldtake into considerationthattheimageis a startingpoint
thatcanbefurthercorrectedusingphotoeditingsoftwaretools.
Furthermore,it hasto be put in the right perspective the fact
that we start with a black and white noisy halftone image
shown in Fig. 7 (enlargedportion) to get to the color image.
With that in mind the resultscanbe consideredvery good.

IV. CONCLUSIONS

In this paper, we proposeda method for reversible con-
version from color imagesto gray onesbasedon redundant
color information embeddedinto subbandsof an M -band
subbandtransform. Among the contributions, we propose
to use a general subbandtransform rather than wavelets,
since it generatesmore subbands,and the insertionof color
information with strong linear redundancy. We have shown
that the ideal distribution of the chrominanceenergy among
many subbandsis to replicatethechrominanceplanefor each
subband.We also have calculatedthe SNR performanceof
the method and the bounds that limit the effectivenessof
chrominanceembedding,aswell astheamountof redundancy.
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Fig. 8. MSE plot for N = 10 in a 4 � 4 DCT embeddingframework.
Printing simulationusederror diffusion, K = 4 andno additive noise.

Fig. 9. The recoveredcolor imagefor N = 10 in a 4 � 4 DCT framework
is shown at the top. Printing simulation includeserror diffusion, Gaussian
�ltering, scalingby K = 4, andnoisewith variance� 2

p = 25.

Redundantsubbandembeddingof chrominanceplanesdis-
torts luminance but improves the robustnessof the color
information. The bounds tell us that if the noise level is
high enoughone should sparemore luminancesubbandsto
protect the chrominancechannel.The printing-scanningpath
is simulatedandour resultsshow thatthenoiseis high enough
to warranttheembeddingof color into many subbands.In fact,
the resultsshow that our methodis effective.
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